期刊文献+

针对可变形履带机器人的动态变形方法研究 被引量:1

A dynamic shape-shifting method for a transformable tracked robot
下载PDF
导出
摘要 针对可变形履带机器人在常规变形过程中履带与地面产生的摩擦力会阻碍甚至终止变形过程的问题,提出了一种新颖的动态变形方法。在动态变形过程中,该方法可使运动模块的履带单元辅助运动以配合变形模块的转动,从而将阻碍变形的部分摩擦力转化为推进变形的动力。针对动态变形的动力学仿真分析表明,采用该动态变形方法,可以有效地减小机器人在变形过程中的阻力矩和能量损耗。同时,针对变形过程的能量损耗、阻力矩以及变形空间这些性能指标,采用多目标优化方法使机器人在动态变形过程中得到最佳的综合性能。该方法动态变形的有效性通过可变形履带机器人平台的实验得到了验证。 The problem in a conventional shape-shifting process for a transformable tracked robot that the friction force between the tracks and the ground may embarrass or even stop the process of the shape-shifting, can be avoided by using the novel dynamic shape-shifting method proposed in the paper. When using the method, the tracks rotate during dynamic shape-shifting to assist the motion of the module which is in charge of the transformation, so part of the friction force can be converted into the propulsion force for the transformation by the assisting motion of the tracks. The dynamic analysis of dynamic shape-shifting shows that the dynamic shape-shifting can reduce the resistance torque and the power loss efficiently in the transformation. The multi-objective optimization method can be used to get the optimal comprehensive performance. The experiments of the dynamic shape-shifting on the trans- formable tracked robot Amoeba-II verified the effectiveness of this method.
出处 《高技术通讯》 CAS CSCD 北大核心 2012年第4期403-409,共7页 Chinese High Technology Letters
基金 863计划(2007AA041502-5)和国家自然科学基金(60905058)资助项目.
关键词 可变形 履带机器人 动态变形 能量损耗 变形空间 多目标优化 transformable, tracked robot, dynamic shape-shifting, power loss, transformation space, multi- objective optimization
  • 相关文献

参考文献12

  • 1Frost T, Norman C, Pratt S, et al. Derived performance metrics and measurements compared to field experience for the PackBot. In: Proceedings of 2002 PerMIS Work- shop, Gaithersburg, USA, 2002.38-43.
  • 2White J R, Sunagawa T. Hazardous-duty robots: experi- ences and needs. In: Proceedings of International Work- shop on Intelligent Robots and Systems, Tsukuba, Japan, 1989.262-267.
  • 3White J R, Coughlan J, Harvey M, et al. Taking Andros. for a walk. Nuclear Engineering International, 1989, 34 (415) :52-53.
  • 4Costo S, Molfino R. A new robotic unit for onboard air- planes bomb disposal. In: Proceedings of the 35th Inter- national Symposium on Robotics, Paris, France, 2004. 23 -26.
  • 5Michaud F. Co-design of Azimuth, a multi-modal robotic platform. In: Proceedings of ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Chicago, USA, 2003.46-50.
  • 6Liu Y, Liu G. Track-stair and vehicle manipulator inter- action analysis for tracked mobile manipulators climbing stairs. In: Proceedings of the IEEE International Confer- ence on Automation Science and Engineering, Arlington, USA, 2008. 157-162.
  • 7Munkeby S, Jones D, Bugg G, et al. Applications for the Matilda robotic platform. SPIE - Unmanned Ground Ve- hicle Technology IV, 2002, 47( 15 ): 206-213.
  • 8王田苗,邹丹,陈殿生.可重构履带机器人的机构设计与控制方法实现[J].北京航空航天大学学报,2005,31(7):705-708. 被引量:22
  • 9Wang M, Ma S, He X, et al. Motion planning for a reconfigurable robot to cross an obstacle. In: Proceedings of the 2006 IEEE International Conference on Mechatron- ics and Automation, Luoyang, China, 2006. 1291-1296.
  • 10贺鑫元,马书根,李斌,王明辉.可重构单体机器人动力学分析与控制[J].中国机械工程,2005,16(21):1889-1894. 被引量:2

二级参考文献19

  • 1张力平,马书根,李斌,张政,曹秉刚.可重构星球探测机器人的空间对接研究[J].中国机械工程,2005,16(8):659-663. 被引量:8
  • 2Bojinov H, Casal A, Hogg T. Emergent structures in modular self-reconfigurable robots[A]. In: Proceedings of the 2000 IEEE International Conference on Robotics & Automation[C]. San Francisco, 2000.1734~1741.
  • 3Zhang Liang, Zhao Jie, Cai Hegao. Research on mechanism design and motion planning of a modular self-reconfigurable robot[A]. In: Proceedings of the 5th World Congress on Intelligent Control and Automation[C]. Hangzhou, 2004.4821~4825.
  • 4Fujita M, Kitano H, Kageyama K. A reconfigurable robot platform[J]. Robotics and Autonomous Systems, 1999, 29: 119~132.
  • 5Zou Dan, Wang Tianmiao, Liang Jianhong, et al. Modularization of miniature tracked reconnaissance robot[A]. In: Proceedings of the 2004 IEEE International Conference on Robotics and Biomimetics[C]. Shenyang, 2004. 456~460.
  • 6Shen Jinxiang, Liu Jiangping, Zhang Hui, et al. Distributed control system for modular self-reconfigurable robots[A]. In: Proceedings of the 2003 IEEE International Conference on Robotics, Intelligent Systems and Signal Processing[C]. Changsha, 2003.932~936.
  • 7Zhang Ying, Kimon D, Yim M, et al. Software architecture for modular self-reconfigurable robots[A]. In: Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems[C]. Hawaii, 2001. 2355~2360.
  • 8Yim M, David G. Kimon D, et al. PolyBot: a modular reconfigurable robot[A]. In:Proceedings of the 2000 IEEE International Conference on Robotics & Automation[C]. San Francisco, 2000. 514~520.
  • 9Satoshi Murata, Eiichi Yoshida, Akiya kamimura, et al. M-TRAN: self-reconfigurable modular robotic system[J]. IEEE/ASME Transactions on Mechatronics, 2002,7(4):431~441.
  • 10Shen W M. Hormone-inspird Adapive Communication and Distributed Control for CONRO Self-reconfigurable Robots. IEEE Transactions on Robotics and Automation,2002, 18(5):700~712

共引文献22

同被引文献33

引证文献1

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部