期刊文献+

结构矩阵分析中的“平衡-几何”互伴定理 被引量:3

AN ADJOINT THEOREM BETWEEN EQUILIBRIUM MATRIX AND GEOMETRIC MATRIX IN STRUCTURAL ANALYSIS
原文传递
导出
摘要 在结构矩阵分析中,"外力-内力"之间的平衡分析及其平衡矩阵[H],"位移-变形"之间的几何分析及其几何矩阵[G],是两大主题和两个主要矩阵。该文提出并论证平衡矩阵[H]与几何矩阵[G]之间的互伴定理。分四点论述:1)建立杆件单元e的平衡矩阵[H]e和几何矩阵[G]e,指出[H]e和[G]e的表示形式不是唯一的,有多种方案可供选择(该文给出方案I和方案II两种不同形式);2)指出[H]e和[G]e可形成多种组合,其中有的是互伴组合(即[H]e与[G]e互为转置矩阵),有的不是互伴组合;3)建立"平衡-几何"互伴定理:如果所选取的单元内力向量{FE}e和单元变形向量{}e互为共轭向量,则其平衡矩阵[H]e和几何矩阵[G]e必为互伴矩阵;4)应用虚功原理可导出"平衡-几何"互伴定理。虽然两者的表述形式不同,但两者是互通的。 In structural matrix analysis,the equilibrium matrix [H] and the geometric matrix [G] are two basic matrices.In this paper,an adjoint theorem between the equilibrium matrix [H] and the geometric matrix [G] is presented and proved.The discussion is divided into four parts: 1) The equilibrium matrix [H]e and the geometric matrix [G]e for the element e are established.There exist several different expressions for [H]e and for [G]e.In this paper two different expressions(version I and version II) are given for examples.2) The relationship between [H]e and [G]e can be classified into two different cases: i) [H]e and [G]e are adjoint matrices(=[G]e);ii) [H]e and [G]e are not adjoint matrices(≠[G]e).3) An adjoint theorem between equilibrium matrix [H]e and geometric matrix [G]e is established.If the element internal force vector e and the element deformation vector [?]e are conjugate vectors,then the equilibrium matrix [H]e and the geometric matrix [G]e are adjoint matrices.4) The adjoint theorem between [H]e and [G]e is proved by the principle of virtual work.
作者 龙驭球
出处 《工程力学》 EI CSCD 北大核心 2012年第5期1-7,共7页 Engineering Mechanics
关键词 结构矩阵分析 互伴定理 平衡矩阵 几何矩阵 虚功原理 structural matrix analysis adjoint theorem equilibrium matrix geometric matrix principle of virtual work
  • 相关文献

参考文献5

  • 1Zienkiewicz O C, Taylor R L. The Finite ElementMethod [M]. Vol. I. Oxford: Butterworth Heinemann, 2000.
  • 2Long Yuqiu, Cen Song, Long Zhifei. Advanced finite element method in structural engineering [M]. Springer, Beijing: Tsinghua University Press, 2009.
  • 3Wang C K. Intermediate structural analysis [M]. New York: Mc-Graw-Hill, 1985.
  • 46Wang C K. Structural analysis on microcomputers [M]. Oxford: Macmillan, 1986.
  • 5Wang C K, Salmon C G Introductory structural analysis [M]. London: Prentice-Hall, 1984.

同被引文献7

引证文献3

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部