摘要
该文采用张量积的试函数逼近形式,即Tu(x,y,z){X(x)}[Z(z)]{Y(y)},成功地建立了三维延拓Kantorovich法的算法方程式,克服了简单试函数逼近形式的迭代不收敛的数值困难。三维Poisson方程的数值算例显示了该算法的迭代收敛性以及高精度和高效率。
Using the function approximation of tensor product,the extended Kantorovich method was successfully applied to three-dimensional problems in the paper and the non-convergence of the iteration procedure using simple function approximation was overcame.Furthermore,the iteration convergence was displayed and high accuracy and efficiency were demonstrated by numerical examples of the three-dimensional Poisson equation.
出处
《工程力学》
EI
CSCD
北大核心
2012年第5期8-12,共5页
Engineering Mechanics
基金
国家杰出青年科学基金项目(59525813)
温州职业技术学院重点课题项目(WZY2010009)