摘要
分析了积分方案对基于柔度法梁-柱单元模型的影响,将高斯积分和钢筋混凝土梁、柱构件损伤特点结合起来,提出了考虑损伤分布的积分方法。将单元非线性区域划分为塑性铰区、开裂区、过渡区,一方面赋予高斯积分区域物理含义,另一方面使得塑性铰区域可以向相邻的开裂区、过渡区扩展,实现塑性铰长度动态变化。对钢筋混凝土框架结构进行静力非线性分析,结果表明:该积分方案更能反映梁、柱构件的实际损伤,具有较好的数值稳定性和收敛性。
The effects of an integration method in forming beam-column element based on flexibility method are analyzed and a new integration method in consideration of the damage distribution of reinforced concrete beams and columns is proposed.The nonlinear zone of beam-column element is divided into a plastic-hinge zone,a crack zone and a transition zone,which correspond to the weight coefficients of Gauss integration.The plastic-hinge zone could extend to the crack and transition zones if needed,thus the plastic-hinge length varies dynamically in nonlinear analysis.The study case shows that the new integration method is more consistent with the actual damage state of beams and columns,and results in better numerical stability and convergence.
出处
《工程力学》
EI
CSCD
北大核心
2012年第5期19-25,共7页
Engineering Mechanics
基金
国家自然科学基金委创新研究群体项目(50621062)
国家自然科学基金-重大研究计划项目(90715033)
关键词
梁-柱单元
有限元柔度法
损伤分布
高斯积分
非线性分析
beam-column element
finite element flexibility method
damage distribution
Gauss integration
nonlinear analysis