期刊文献+

基于改进BP神经网络的TA15钛合金近β锻造组织预测模型 被引量:3

Model for predicting microstructure of TA15 titanium alloy in near β forging based on improved BP neural network
下载PDF
导出
摘要 文章以训练结果的误差均方差与误差和降低为目标,通过循环和判断语句改进了MATLAB人工神经网络(ANN)工具箱的BP算法,实现BP网络多结构、多次循环训练,建立了TA15钛合金近β锻造变形参数(变形温度、应变速率和变形量)和变形水冷(WQ)及后续热处理(再结晶退火或高低温强韧化处理)后的组织特征参数(等轴α相的含量、平均晶粒直径和轴比,条状α相的含量和厚度)之间关系的BP人工神经网络模型。结果表明,针对近β锻造组织预报输入参数多,输入-输出参数高度非线性,该模型可以有效避免传统BP模型容易陷入局部极小值点的缺点,可较准确的得到各工艺参数组合下的组织特征参数;模型预测结果可以用于近β锻造不同工艺参数组合下组织特征参数的预报,及其演化规律的分析。 Taking the reduction of the mean square error and the error sum of the training results as the goal,adopting loop and judgment statements,the BP algorithm of the MATLAB ANN toolbox was improved,the multi-structure and repeated training of BP network were achieved,the model based on BP ANN for describing the relationship between deformation parameters(deformation temperature,strain rate and total deformation) and characteristic parameters of the microstructure(the average grain size,the content of equiaxed α,the content and the thickness of striature α) after deforming water cooling(WQ) and subsequent heat treatments(recrystallization annealing or a high and low temperature toughening and strengthening treatment) in near β forging process of TA15 titanium was developed.The results show that:in allusion to excessive input parameters and high nonlinear characteristics of the input-output parameters in near β forging,this model can effectively avoid being prone to fall into local minimum point as in traditional BP model,and can obtain more accurate characteristic parameters of microstructure under different process conditions.The results can be used to predict the microstructure in near β forging with different process parameters,and play a guide to investigate the evolution mechanism of the microstructure in near β forging.
出处 《塑性工程学报》 CAS CSCD 北大核心 2012年第2期49-55,共7页 Journal of Plasticity Engineering
基金 国家"973"资助项目(2010CB731701) 国家自然科学基金资助项目(50735005 50935007 50905145) 凝固技术重点实验室资助项目(59-TP-2010) "111"引智计划资助项目(B08040)
关键词 TA15钛合金 近Β锻造 组织特征参数 变形参数 BP人工神经网络模型 TA15 titanium near β forging characteristic parameters of the microstructure deformation parameters BP artificial neural network
  • 相关文献

参考文献9

  • 1ZHOU Yigang,ZENG Weidong,YU Hanqing.An in-vestigation of a new near-beta forging process for tita-nium alloys and its application in aviation components[J].Materials Science and Engineering:A,2005.393:204-212.
  • 2周义刚,曾卫东,俞汉清.近β锻造推翻陈旧理论发展了三态组织[J].中国工程科学,2001,3(5):61-66. 被引量:46
  • 3曾卫东,舒滢,周义刚.应用人工神经网络模型预测Ti-10V-2Fe-3Al合金的力学性能[J].稀有金属材料与工程,2004,33(10):1041-1044. 被引量:30
  • 4朱景川,岳洋,王洋,刘勇,杨夏炜.TA15钛合金热变形工艺-组织的人工神经元预报[J].中国有色金属学报,2009,19(4):649-655. 被引量:3
  • 5Kai-xuan WANG,Wei-dong ZENG,Yong-qing ZHAO,et al.Prediction of dynamic globularization of Ti-17ti-tanium alloy with initial lamellar microstructure duringhot compression[J].Materials Science and Engineer-ing:A,2010.527(23):6193-6199.
  • 6M Q Li,X Y Zhang.Modeling of the microstructurevariables in the isothermal compression of TC11alloyusing fuzzy neural networks[J].Materials Science andEngineering:A,2011.528(6):2265-2270.
  • 7Zhichao SUN,He YANG,Ze TANG.Microstructuralevolution model of TA15titanium alloy based on BPneural network method and application in isothermaldeformation[J].Computational Materials Science,2010.50(2):308-318.
  • 8S Malinov,J J Mckeown.Modelling the correlation be-tween processing parameters and properties in titaniumalloys using artificial neural net work[J].Computation-al Materials Science,2001.21(3):375-394.
  • 9Jiao LUO,Miaoquan LI,Yiqu HU,et al.Modeling ofconstitutive relationships and microstructural variablesof Ti-6.62Al-5.14Sn-1.82Zr alloy during high temper-ature deformation[J].Materials Characterization,2008.59(10):1386-1394.

二级参考文献36

  • 1曾卫东,舒滢,周义刚.应用人工神经网络模型预测Ti-10V-2Fe-3Al合金的力学性能[J].稀有金属材料与工程,2004,33(10):1041-1044. 被引量:30
  • 2王斌,郭鸿镇,姚泽坤,赵静,赵张龙,张明渊.复合形变热处理对TA15近α钛合金组织和性能的影响[J].材料热处理学报,2006,27(5):70-72. 被引量:8
  • 3王斌,郭鸿镇,姚泽坤,陈金科,李蓬川.热压参数对TA15合金流动应力及显微组织的影响[J].锻压技术,2006,31(6):106-109. 被引量:18
  • 4MALINOV S, SHAW. Application of artificial neural networks for modelling correlations in titanium alloys[J]. Materials Science and Engineering, 2004, 365:202-211.
  • 5MALINOV S, SHA W, MC KEOWN J J. Modelling the correlation between processing parameters and properties in titanium alloys using artificial neural network[J]. Computational Materials Science, 2001, 21: 375-394.
  • 6TANDON V, EL-MOUNAYRI H. A novel artificial neural networks force model for end milling[J]. IJAMT, 2001, 8: 693-700.
  • 7OZAN S, TASKIN M, KOLUKISA S, OZERDEM M S. Application of ANN in the prediction of the pore concentration of aluminum metal foams manufactured by powder metallurgy methods[J]. Springer Int J Adv Manuf Technol, 2008, 39(3/4): 251-256.
  • 8XU L J, PAULODAVIM J, CARDOSO R. Prediction on tribological behaviour of composite PEEK-CF30 using artificial neural networks[J]. Materials Processing Technology, 2007, 189: 374-378.
  • 9BAHRAMI A, MOUSAVI ANIJDAN S H, EKRAMI A. Prediction of mechanical properties of DP steels using neural network model[J]. Alloys and Compounds, 2005, 392: 177-182.
  • 10TOPCU I B, SARIDEMIR M. Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic[J]. Computational Materials Science, 2008, 41: 305-311.

共引文献75

同被引文献28

  • 1周军,曾卫东,舒滢,周义刚.应用热加工图研究TC17合金片状组织球化规律[J].稀有金属材料与工程,2006,35(2):265-269. 被引量:42
  • 2王利发,刘建中,胡本润.TA15钛合金电子束焊焊接接头力学性能[J].焊接学报,2007,28(1):97-100. 被引量:32
  • 3MA X,ZENG W D.SUN Y, et al. Modeling constitutive relation-ship of Til7 titanium alloy with lamellar starting microstructure[J]. Materials Science and Engineering,2012, A 538: 182-189.
  • 4SEMIATIN S L.BIELEK T R. The effect of alpha platelet thick-ness on plastic flow during hot working of Ti-6A1-4V with a trans-formed microstructure[J]. Acta Materialia, 2001,49 : 3 565-3 573.
  • 5SUN Z C. GUO S S,YANG H. Nucleation and growth mecha-nism of crlamellae of Ti alloy TA15 cooling from an a+ /3 phasefield[J]. Acta Materialia,2013 , 61 :2 057-2 064.
  • 6董敁娟.片状组织TA15钛合金a+/3相区塑性变形特性及等轴化行为研究[D].南京:南京航空航天大学,2011.
  • 7BEHRANG P G J,MAKOTC) Y M G C’YOSHIO 1 S M,et al.Microstructure evolution during deformation of a near-a titaniumalloy with different initial structures in the two-phase region[J].Scripta Materialia,2009.61:419-422.
  • 8DOHERTY R D, HUGHES D A, HUMPHREYS F J,et al.Current issues in recrystallization: a review [J]. Materials Scienceand Engineering, 1997 , A238:219-274.
  • 9KIM J Y, PARK K T, SHIM I O,et al. Globularization behaviorof ELI grade Ti-6AI-4V alloy during non-isothermal multi-stepforging[J]. Materials Transactions, 2008,49(1) -.215-223.
  • 10ZHEREBTSOV S,MURZINOVA M, SALISHCHEV G’et al.Spheroidization of the lamellar microstructure in Ti-6AI-4V alloyduring warm deformation and annealing [ J Acta Materialia,2011,59:4 138-4 150.

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部