期刊文献+

神经网络自适应滑模控制的不确定机器人轨迹跟踪控制 被引量:4

Neural network-based adaptive sliding mode trajectory tracking control of uncertainty robot manipulators
下载PDF
导出
摘要 提出一种针对机器人跟踪控制的神经网络自适应滑模控制策略。该控制方案将神经网络的非线性映射能力与滑模变结构和自适应控制相结合。对于机器人中不确定项,通过RBF网络分别进行自适应补偿,并通过滑模变结构控制器和自适应控制器消除逼近误差。同时基于Lyapunov理论保证机器手轨迹跟踪误差渐进收敛于零。仿真结果表明了该方法的优越性和有效性。 A neural network-based adaptive sliding mode control, which is designed to ensure trajectory tracking by the uncertainty robot manipulator. This control algorithm integrates the nonlinear mapping of neural network and adaptive and sliding mode control. To the uncertainty of robot manipulators, neural network is used to respectively adaptively learn and compensate the unknown system, and approach error is eliminated by used variable structure and adaptive controller. And based on Lyapunov, this new controller can guarantee the asymptotic convergence of the tracking error to zero. The simulation results show the effectiveness of the presented methods.
出处 《微型机与应用》 2012年第9期60-62,65,共4页 Microcomputer & Its Applications
关键词 不确定机器人 神经网络 自适应控制 uncertainty robot manipulators neural network adaptive control
  • 相关文献

参考文献8

  • 1DOULGERI Z. Sliding regime of a nonlinear robust controller for robot manipulators [J]. IEE Proceedings Control Theory and Application, 1999,146(6):493-498.
  • 2COLBAUGH R, GLASS K. Adaptive tracking control of rigid manipulators using only position measurements [J]. Journal of Robot and System, 1997,14(1):9-26.
  • 3KIM Y H, LEWIS F L. Neural network output feedback control of robot manipulator [J]. IEEE Transactions on Robotics and Automation, 1999,15 (2) : 301-309.
  • 4CILIZ M K. Adaptive control of robot manipulators with neural network based compensation of frictional uncertainties [J]. Robotica, 2005, 23:159 - 167.
  • 5张文辉,齐乃明,尹洪亮.自适应神经变结构的机器人轨迹跟踪控制[J].控制与决策,2011,26(4):597-600. 被引量:27
  • 6SUN T, Pei Hailong. Neural network-based sliding mode adaptive control for robot manipulators [J]. Neurocomputing, 2011,74:2377-2384.
  • 7LU Y, Liu J K. Actuator nonlinearities compensation using RBF neural networks in robot control system [C]. IMACS Multiconference on Computational Engineering in Systems Application, 2006.
  • 8牛玉刚,杨成梧,陈雪如.基于神经网络的不确定机器人自适应滑模控制[J].控制与决策,2001,16(1):79-82. 被引量:28

二级参考文献11

  • 1王洪斌,李铁龙,郭继丽.机器人的神经网络鲁棒轨迹跟踪控制[J].电机与控制学报,2005,9(2):145-147. 被引量:7
  • 2魏立新,李二超,王洪瑞.基于CMAC在线自学习模糊自适应控制的机器人力/位置鲁棒控制[J].电工技术学报,2005,20(5):40-44. 被引量:7
  • 3Lin C K. Non-singular terminal sliding mode control of robot manipulators using fuzzy wavelet networks[J]. IEEE Trans on Fuzzy System, 2006, 14(6): 849-859.
  • 4Niu Y G, Wang X Y, Hu C. Neural network output feedback control for uncertain robotiC]. Proc of the 4th World Congress on Intelligent Control and Automation. Shanghai, 2002: 1980-1984.
  • 5Hu H, Woo P Y. Fuzzy supervisory sliding-mode and neural-network control for robotic manipulators[J]. IEEE Trans on Industrial Electronics, 2006, 53(3): 929-940.
  • 6Hsu C F. Self-organizing adaptive fuzzy neural control for a class of nonlinear systems[J]. IEEE Trans on Neural Network, 2006, 14(6): 755 -766.
  • 7Lee M J, Choi Y K. A adaptive neural controller using RBFN for robot'manipulators[J]. IEEE Trans on Industrial Electronics, 2004, 51(3): 711-717.
  • 8Sanner R M, Slotine J J E. Gaussian networks for direct adaptive control[J]. IEEE Trans on Neural Network, 1992, 3(6): 2116-2123.
  • 9Nam B H,Proc Am Contr Conf,1997年,3120页
  • 10Man Z,Proc IEEE Int Conf Neural Networks,1995年,2403页

共引文献53

同被引文献62

引证文献4

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部