期刊文献+

一种模糊偏好排序的FJSP蚁群算法

A FJSP ant colony algorithm of fuzzy preference sorting
下载PDF
导出
摘要 针对柔性作业车间调度问题,选取三个性能指标作为求解目标。将蚁群算法与模糊属性权重结合在一起,提出了求解FJSP的新算法。该算法利用了蚁群算法的正反馈机制,在逐步构造解的过程中利用最优解信息和启发式信息增强全局求解能力,寻求各目标较好的全局最优解。采用模糊属性权重对各目标进行综合评价,最终求解出FJSP问题的最优解集。 According to the characteristics of flexible job-shop scheduling problem, selecting three performance indexes as solving target, and combining ant colony algorithm with fuzzy attribute weight, it proposes a new algorithm to solve FJSP. This algorithm uses the positive feedback mechanism of ant colony algorithm, and takes advantage of optimal solution information and heuristic information to enhance global solving ability in process of gradual constructing solution, which is in order to seek better global optimal solution for each target. Then it applies fuzzy attribute weight to take comprehensive evaluation on each target which finally concludes the optimal solution set of FJSP.
出处 《微型机与应用》 2012年第9期72-74,共3页 Microcomputer & Its Applications
基金 兰州交通大学大学生科技创新项目(DXS2011-023) 兰州交通大学大学生创新性实验(201062)
关键词 柔性作业车间调度 蚁群算法 模糊属性权重 信息素更新规则 flexible job-shop scheduling problems ant colony algorithm fuzzy attribute weight pheromone updating rule
  • 相关文献

参考文献6

  • 1SHENG L, Wei Xiaobin, WENY Z. Improved aco schedulingalgorithm based on flexible process [J] Transactions of Nanjing University of Aeronautics & Astronautics (S1005-1120) ,2006,23(2) : 154-160.
  • 2BRANDIMARTE P. Routing and scheduling in a flexible job shop by tabusearch[J]. Annals of Operations Research, 1993,22(2) : 157-183.
  • 3KACEM I. Genetic algorithm for the flexible job-shop scheduling problem [J]. IEEE International Conference on Systems,Man,and Cybernetics,2003(4) :3464-3469.
  • 4DORIGO M, MANIEZZO V, COLORNI A. The ant system: optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems, Man, and Cybernetics Part B (S1094-6977),1996, 26(1) :29-41.
  • 5李世威,王建强,曾俊伟.一种模糊偏好排序的多目标粒子群算法[J].计算机应用研究,2011,28(2):477-480. 被引量:9
  • 6BONISSOE P P. A panern recogition approach to the problem of linguistic approximation in system analysis[A]. IEEE 1976 International Conference on Cybernetics and Society[C]. NewYork,USA: IEEE, 1979.793-798.

二级参考文献16

  • 1吴国华,潘德惠.一种消费者品牌偏好的模糊排序方法[J].系统工程理论与实践,2004,24(9):28-32. 被引量:15
  • 2COELLO C C A, PULIDO G T, LECHUGA M S. Handling multiple objectives with particle swarm optimization[J].IEEE Trans on Evolutionary Computation,2004,8(3):256-279.
  • 3BERGH van den F, ENGELBRECHT A P. A study of particle swarm optimization particle trajectories[J].Information Sciences,2006,176(8):937-971.
  • 4BERGH van den F, ENGELBRECHT A P. A cooperative approach to particle swarm optimization[J].IEEE Trans on Evolutionary Computation,2004,8(3):225-239.
  • 5NICKABADI A, EBADZADEH M M, SAFABAKHSH R. A dynamic niching particle swarm optimizer for multi-modal optimization[J].Proceeding of the IEEE CEC,2008,41(8):26-32.
  • 6SUN Jun, FENG Bin, XU Wen-bo. Particle swarm optimization with particles having quantum behavior[C]//Proc of Congress on Evolutionary Computation. 2004: 325-331.
  • 7TSAI C F, TSAI C W, WU Han-chang, et al. ACODF: a novel data clustering approach for data mining in large databases[J].Journal of Systems and Software,2004,73(1):133-145.
  • 8TSOU D, MACNISH C. Adaptive particle swarm optimization for high-dimensional highly convex search spaces[C]//Proc of IEEE Congress on Evolutionary Computation. 2003:783-789.
  • 9UJJIN S, BENTLEY P J. Particle swarm optimization recommender system[C]//Proc of IEEE Swarm Intelligence Symposium.2003:124-131.
  • 10MA Yun-qian, CHERKASSKY V. Multiple model classification using SVM-based approach[C]//Proc of International Joint Conference on Neural Networks.2003:1581-1586.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部