期刊文献+

基于QGA-LSSVM的醋酸乙烯聚合率软测量建模 被引量:3

Research on Soft Sensor Modeling of Vinyl Acetate Polymerization Rate Based on Hybrid QGA-LSSVM
下载PDF
导出
摘要 针对最小二乘支持向量机(LS-SVM)在建立醋酸乙烯(VAC)聚合率软测量模型过程中最优模型参数的选择问题,提出了利用一种量子遗传算法来自动选取LS-SVM模型正则化参数和核函数参数的方法;把LS-SVM模型参数的选择问题转化为优化问题,利用全局搜索能力强的量子遗传算法优化LS-SVM建模过程的重要参数,建立了基于QGA-LSSVM方法的VAC聚合率软测量模型;仿真结果表明:与已有的神经网络和支持向量机软测量方法相比,该模型泛化能力强,精度高,更有利于醋酸乙烯聚合率测量工程实际运用。 An quantum genetic algorithm (QGA) was proposed to ow:rcome the disadvantage that it' s difficult to get better parameter values of least squares support vector machine (LS--SVM) and the mixed kernel function in the processing of establish the soft sensing of vinyl acetate (VAC) polymerization rate. The method can convert the LS--SVM model parameters of selection into optimization problem, the best parameters of LS--SVM would be selected by QGA which has the ability of better search, and the QGA--LSSVM mode about soft sensing of VAC polymerization rate was constructed. The simulation result indicated that compared with the methods based on neural network and support vector machine, the QGA--LSSVM model has more effective generation performance and high precision, and it is more conducive to the practical application of engineering measurements.
出处 《计算机测量与控制》 CSCD 北大核心 2012年第4期907-909,913,共4页 Computer Measurement &Control
关键词 软测量 醋酸乙烯聚合率 最小二乘支持向量机 量子遗传算法 soft--sensor VAC polymerization rate least squares support vector machine quantum genetic algorithm
  • 相关文献

参考文献12

二级参考文献101

共引文献244

同被引文献30

  • 1訾建威,杨洪英,巩恩普,杨立,赵玉山,范有静.细菌氧化预处理含砷难处理金矿的研究进展[J].贵金属,2005,26(1):66-70. 被引量:23
  • 2常玉清,邹伟,王福利,毛志忠.基于支持向量机的软测量方法研究[J].控制与决策,2005,20(11):1307-1310. 被引量:18
  • 3韩晓光,郭普金,具滋范.生物氧化提金技术工业生产实践[J].黄金,2006,27(11):38-41. 被引量:30
  • 4Li H,Guo S,Zhao H,et al.Annual electric load forecasting by a least squares support vector machine with a fruit fly optimization algorithm[J] .Energies,2012,5 (11):4430-4445.
  • 5Karaboga D,Basturk B.A powerful and efficient algorithm for numerical function optimization:artificial bee colony (ABC) algorithm[J] .Journal of global optimization,2007,39 (3):459-471.
  • 6Karaboga D,Gorkemli B.A quick artificial bee colony-qABC-algorithm for optimization problems[A] .Innovations in Intelligent Systems and Applications (INISTA),2012 International Symposium on[C] .IEEE,2012:1-5.
  • 7Suykens J A K,Vandewalle J.Least squares support vector machine classifiers[J] .Neural processing letters,1999,9 (3):293-300.
  • 8Vapnik V. The nature of statistical learning theory [M] . [S. 1.]: Springer Verlag, 1995.
  • 9Suykens J A K, Vandewalle J, Moor B D. Optimal control by least squares support vector machines [J]. Neural Networks, 2001. 14 (1).-23-35.
  • 10Karaboga, D, An idea based on honey bee swarm for numerical optimization [ R ]. Erciyes University, Engineering Faculty, Computer Engineering Department, 2005.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部