摘要
设A是Jordan代数,如果线性映射d:A→A满足任给a,b∈A都有d(a。b)=d(a)。b+a。d(b),则称d是Jordan导子。本文给出了自伴算子构成的Jordan代数和Spin因子上的Jordan导子的具体表达形式,并且证明了Spin因子上的局部Jordan导子和2-局部Jordan导子是Jordan导子。
Let A be a unital Jordan algebra.A linear map d: A→A is called a Jordan derivation on A if it satisfies that d(a 。b)=d(a) 。b+a 。d(b) for all a,b∈A.Expressions of the Jordan derivations of Jordan algebras of all self-adjoint operators and Spin factors are given.It is proved that all local Jordan derivations and 2-local Jordan derivations on Spin factors are Jordan derivations.
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2012年第4期1-4,共4页
Journal of Shandong University(Natural Science)
基金
国家自然科学基金资助项目(10971117)