期刊文献+

一类环上的Jordan可导映射 被引量:1

Additive Jordan derivable maps of certain rings
原文传递
导出
摘要 证明了一类环R上的可加映射δ满足对任意的S,T∈R且ST=P均成立δ(ST)=δ(S)。T+Sδ(T)当且仅当δ是一个Jordan导子,其中S。T=ST+TS为Jordan积,P为环R中的一个非平凡幂等元。 Under some mild conditions on a unital ring R,we show that every additive map δ from R into itself satisfies δ(S 。T)=δ(S) 。T+S 。δ(T) for any S,T∈R with ST=P if and only if δ is a Jordan derivation,where S 。T=ST+TS is the Jordan product and P is a nontrivial idempotent of ring R.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2012年第4期5-10,共6页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(10726043)
关键词 JORDAN导子 Jordan可导映射 ring Jordan derivation Jordan derivable map
  • 相关文献

参考文献13

  • 1WU Jing. On Jordan all-derivable points of [J]. Linear Algebra Appl, 2009, 430:941-946.
  • 2WU Jing, LU Shijie, LI Pengtong. Characterizations of derivations on some operator algebras [J]. Bull Austral Math Soc, 2002, 66:227-232.
  • 3LI Jiankui, PAN Zhidong, XU Huasu. Characterizations of isomorphisma and derivations of some algebras [ J ]. J Math Anal Appl, 2007, 332:1314-1322.
  • 4HOU Jinchuan, AN Runling. Additive maps on rings bahaving like derivations at idempotent-product elements[J]. J Pure Ap- pl Algebra, 2011, 215:1852-1862.
  • 5AN Runling, HOU Jinchuan. Characterizations of derivations on triangular rings : additive maps derivable at idempotents[J]. Linear Algebra Appl, 2009, 431:1070-1080.
  • 6JIAO Meiyan, HOU Jinchuan. Additive maps derivable at zero point on nest algebras[J]. Linear Algebra Appl, 2010, 432: 2984-2994.
  • 7ZHAO Sha, ZHU Jun. Jordan all-derivable points in the algebra of all upper triangular matrices [J]. Linear Algebra Appl, 2010, 433:922-1938.
  • 8ZHU Jun. All-derivable points of operator algebras[J]. Linear Algebra Appl, 2007, 427:1-5.
  • 9ZHU Jun, XIONG Changping, ZHANG Lin. All-derivable points in matrix algebras [J]. Linear Algebra Appl, 2009, 430 : 2070-2079.
  • 10ZHU Jun, XIONG Changping, ZHANG Renyuan. All-derivable points in the algebra of all upper triangular matrices [J]. Linear Algebra Appl, 2008, 429 : 804-818.

同被引文献10

  • 1WU Jing, LU Shijie, LI Pengtong. Characterizations of derivations on some operator algebras E J ]. Bull Austral Math Soc, 2002, 66:227-232.
  • 2HOU Jinchuan, QI Xiaofei. Derivable maps at some points on JSL algebrasE J]. Linear Algebra Appl, 2008, 429:1851-1863.
  • 3HOU Jinchuan, AN Runling. Additive maps behaving like derivations at idempotent-product elements [J]. J Pure Appl Alge- bra, 2011,215: 1852-1862.
  • 4QI Xiaofei, CUI Jianlian, HOU Jinchuan. Characterizing additive C-Lie derivations of prim algebras by C-Lie zero products E J]. Linear Algebra Appl, 2011, 434:669-682.
  • 5LU Fangyan, WU Jing. Characterizations of Lie derivations of B(X) [J]. Linear Algebra Appl, 2010, 432:89-99.
  • 6QI Xiaofei, HOU Jinchuan. Additive Lie (:-Lie) derivations and generalized Lie (:-Lie) derivations on nest algebras [J] Linear Algebra Appl, 2009, 431 : 843-854.
  • 7JI Peisheng, QI Weiqing. Characterizations of Lie derivations of tringular algebras [J]. Linear Algebra Appl, 20 l 1,435 : 1137- 1146.
  • 8BRESAR M. Characterizing homomorphisms, multipliers and derivations in rings with idempotents [ J]. Proc Roy Soc Edin- burgh sect, 2007 A: 137 9-21.
  • 9AN Runling, HOU Jinchuan. Characterizations of derivations on tringular rings: additive maps derivable at idempotents [J]. Linear Algebra Appl, 2009, 431:1070-1080.
  • 10陈琳,张建华.套代数上的零点Lie可导映射[J].数学学报(中文版),2009,52(1):105-110. 被引量:9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部