期刊文献+

上三角算子矩阵值域的闭性

Closedness of ranges of upper triangular operator matrix
原文传递
导出
摘要 设A∈B(H),B∈B(K),定义MC=(A C0B),其中C∈B(K,H)。基于算子分块的技巧,讨论了当R(A),R(B)都是闭的时候,对每一C∈B(K,H),R(MC)是闭的充要条件。进而研究了:(ⅰ)当R(A)不闭,R(B)闭时,以及当R(A)闭,R(B)不闭时,对任意C∈B(K,H),R(MC)不闭的充要条件;(ⅱ)当R(A),R(B)同时不闭时,对任意C∈B(K,H),R(MC)不闭的充要条件。 Let A∈B(H),B∈B(K).Defined the operator MC by MC=(A C0B),in which C∈B(K,H).Basing on the technique of block operator matrix,the sufficient and necessary conditions of the closedness of R(MC) for every C∈B(K,H) are discussed,when R(A) and R(B) are both closed.Furthermore,the following two questions are researched:(ⅰ) the sufficient and necessary conditions when the range R(MC) is not closed for every C∈B(K,H),when R(A) is not closed,R(B) is closed and the R(A) is closed,but R(B) is not closed;(ⅱ) the sufficient and necessary conditions when the range R(MC) is not closed for every C∈B(K,H),when both R(A) and R(B) are not closed.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2012年第4期42-46,52,共6页 Journal of Shandong University(Natural Science)
基金 安康学院2009年高层次人才专项项目(AYQDZR200913) 陕西省教育厅科学研究项目(11JK043)
关键词 值域 算子矩阵 上三角算子矩阵 range operator matrix upper triangular operator matrix
  • 相关文献

参考文献3

二级参考文献37

  • 1Du, H. K., Pan, J.: Perturbation of spectrums of 2 × 2 operator matrices. Proc. Amer. Math. Soc., 121,761-766 (1994).
  • 2Han, J. K., Lee, H. Y., Lee, W. Y.: Invertible completions of 2 × 2 upper triangular operator matrices.Proc. Amer. Math. Soc., 128, 119-123 (2000).
  • 3Han, Y. M., Djordjevi6, S. VI: a-Weyl's theorem for operator matrices. Proc. Amer. Math, Soc., 130,715-722 (2001).
  • 4Lee, W. Y.: Weyl spectra of operator matrices. Proc, Amer. Math. Soc., 129, 131-138 (2000).
  • 5Lee, W. Y.: Weyl's theorem for operator matrices. Intege. Equ. Oper. Theory, 32, 319-331 (1998).
  • 6Weyl, H.: Uber beschrankte quadratische Formen, deren Differenz vollstetig ist. Rend. Circ. Mat. Palermo,27, 373-392 (1909).
  • 7Djordjevic, SI V.,Djordjevic, D. S.: Weyl's theorems: continuity of the spectrum and quasihyponormal operators. Acta Sci. Math. (Szeged), 64, 259-269 (1998).
  • 8Rakocevic, V.: Operators obeying a-Weyl's theorem. Rev. Roumaine Math. Pures Appl., 34(10), 915-919(1989).
  • 9Taylor, A. E.: Theorems on ascent, descent, nullity and defect of linear operators. Math. Ann., 168, 18-49(1966).
  • 10Conway J. B., Functional analysis, New York: Springer-Verlag, 1989.

共引文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部