摘要
设A∈B(H),B∈B(K),定义MC=(A C0B),其中C∈B(K,H)。基于算子分块的技巧,讨论了当R(A),R(B)都是闭的时候,对每一C∈B(K,H),R(MC)是闭的充要条件。进而研究了:(ⅰ)当R(A)不闭,R(B)闭时,以及当R(A)闭,R(B)不闭时,对任意C∈B(K,H),R(MC)不闭的充要条件;(ⅱ)当R(A),R(B)同时不闭时,对任意C∈B(K,H),R(MC)不闭的充要条件。
Let A∈B(H),B∈B(K).Defined the operator MC by MC=(A C0B),in which C∈B(K,H).Basing on the technique of block operator matrix,the sufficient and necessary conditions of the closedness of R(MC) for every C∈B(K,H) are discussed,when R(A) and R(B) are both closed.Furthermore,the following two questions are researched:(ⅰ) the sufficient and necessary conditions when the range R(MC) is not closed for every C∈B(K,H),when R(A) is not closed,R(B) is closed and the R(A) is closed,but R(B) is not closed;(ⅱ) the sufficient and necessary conditions when the range R(MC) is not closed for every C∈B(K,H),when both R(A) and R(B) are not closed.
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2012年第4期42-46,52,共6页
Journal of Shandong University(Natural Science)
基金
安康学院2009年高层次人才专项项目(AYQDZR200913)
陕西省教育厅科学研究项目(11JK043)
关键词
值域
算子矩阵
上三角算子矩阵
range
operator matrix
upper triangular operator matrix