期刊文献+

抛物型方程的Shannon小波配点法

Shannon Wavelet Collocation Method for Solving PDEs of Parabolic Type
下载PDF
导出
摘要 利用Shannon小波配点法对一维抛物型方程进行求解,将一维Shannon尺度函数引入到抛物型方程求解中,选取一个适当的加窗基函数,给出了一维抛物型方程解的近似表达式,运用小波配点法对一维抛物型方程进行空间离散,将该问题转化为常微分方程组,利用龙格-库塔法对方程组进行数值求解。数值解结果显示,所采用的方法其数值解具有比较高的精度。 This paper is the use of Shannon wavelet collocation method for one-dimensional parabolic equation solving.The Shannon scaling function of one-dimensional was introduced to solve the parabolic equation.The appropriate windowed basis function was selected,and the approximation expression of one-dimensional parabolic equation was given.Furthermore,one-dimensional parabolic equation was spatially discretized by wavelet collocation method and transformed to differential equations,which could be solved by Rungc-Kutta method.The results show that the method used in this paper has a good accuracy.
作者 史策
机构地区 陕西教育学院
出处 《咸阳师范学院学报》 2012年第2期11-13,共3页 Journal of Xianyang Normal University
关键词 抛物型偏微分方程 数值解 SHANNON小波 配点法 小波基 partial differential equations of parabolic type numerical solution Shannon wavelet collocationmethod wavelet base
  • 相关文献

参考文献9

  • 1Haar A. Zur theorie der ortho normal function-system[J].Mathematische Annalen,1910.331-337.
  • 2Gabor. Theory of communications[J].Inst Elec Eng,1946.429-457.
  • 3Meyer Y. Pseudo differential operatiors[J].Prsc Symp Pure Math,1985.215-235.
  • 4Daubechies. The wavelet transform time-frequency localization and signalAnalysis[J].IEEE Transactions on Information theory,1990,(05):961-1005.
  • 5Mallat S. Multi frequency channel decompositions of images and wavelet models[J].IEEE Transactions on Acoustics,Speech and Signal Processing,1989,(12):2091-2110.
  • 6董晓红,邓彩霞,韩红.用小波配点法求解一类偏微分方程[J].哈尔滨理工大学学报,2006,11(1):33-35. 被引量:4
  • 7董艳,申亚男.用小波配点法求解热传导方程[J].科技信息,2007(5):145-146. 被引量:1
  • 8Wei G W. Quasi wavelets and quasi interpolating wavelets[J].Chemical Physics Letters,1998.215-222.
  • 9吴勃英,邓中兴.热传导方程的小波解法[J].应用数学学报,2001,24(1):10-16. 被引量:14

二级参考文献9

  • 1[1]Daubechies I. Orthogonal Bases of Compactly Supported Wavelets. Comm. Pure. Appl. Math., 1988,7:909-996
  • 2[2]Beylkin G. On the Representation of Operators in Bases of Compactly Supported Wavelets. SIAM J. Numer, Anal., 1992, 6:1716-1740
  • 3[3]Glowinski R, Lawton W. Wavelet Solution of Linear and Nonlinear Elliptic, Parabolic, and Hyperbolic Problems in One Space Dimension. Comp. Math. Appl. Sciences and Engineering, SIAM Publ.,Philadelphia, PA, 1990
  • 4VASILYEV OV,PAOLUCCIS.A Dynamically Daptive Multilevel Wavelet Collocation Method for Solving Partial Differential Equations Finite Domain[J].J Comput Phys,1996,125(2):498-512.
  • 5李荣华.微分方程数值解法[M].北京:高等教育出版社,2002.
  • 6DAHMEN W,PROSSDORF S,SCHNEIDER R.Multiscale Methods for Pseudo Differential Equations[M].Preprint,1993.
  • 7BERTOLUZZA S,NALDI.A G.Wavelet Collocation Method for the Numerical Solution of Partial Differential Equations[M].Applied and Computational Harmonic Analysis,1996.
  • 8龙爱芳.微分方程的小波解[J].河南师范大学学报(自然科学版),2002,30(4):23-28. 被引量:5
  • 9杜微微,邓彩霞,赵国良.Shannon小波变换像空间的描述[J].哈尔滨理工大学学报,2003,8(3):127-130. 被引量:2

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部