摘要
本文提出了一个大规模有界约束优化的积极集算法。积极集利用ε-近似技术识别。搜索方向有两部分构成:非积极变量所在空间的搜索方向采用有限记忆BFGS方法计算;另一部分通过一个显式计算。最后,在较弱条件下,证明了算法具有全局收敛性。
An active set algorithm for large scale bound constrained minimization is proposed in this paper.The active sets are estimated by an ε approximation identification technique.The search direction consists of two parts: in the subspace spanned by inactive variables,the search direction is defined by the limited memory BFGS method,the other part is defined by the subspace simple formulation.Finally,the global convergence is proved under mild condition.
出处
《科技信息》
2012年第13期36-37,共2页
Science & Technology Information
关键词
积极集算法
有界约束优化
非单调线搜索
非积极集变量
全局收敛
Active set algorithm
Bound constrained optimization
Nonmonotone line search
Inactive variables
Global convergence