期刊文献+

基于检索日志的检索词推荐研究 被引量:4

Research on the Recommendation of Retrieval Words Based on Retrieval Log
原文传递
导出
摘要 为了满足检索用户对推荐服务日益迫切的需求,结合检索词推荐需求研究推荐理论。基于三种典型推荐方法:基于内容的过滤、基于规则的过滤和基于协作的过滤,提出一种检索词的混合推荐方法,并基于检索日志构建一种"脱机预处理和挖掘、联机推荐"的检索词推荐模型。最后,在NSTL嵌入式系统上进行实证研究。基于检索日志数据,以简单检索方式下的检索词推荐为突破口,设计一套原型系统,验证检索词的推荐效果并在原型系统上检验一种改进的BWP方法的效果。 Based on the theory research on the recommendation of information service, three typical recommendation methods are intro- duced into the recommendation of the retrieval words in order to meet users' increasing and pressing demand. And a combined recommenda- tion method is provided in this paper and a recommendation model of retrieval words based on the retrieval log is formed which is ' prepro- cessing and mining off line, recommending on line'. At last, the lab is conducted on the NSTL(National Science and Technology Library) embedded resource services system. A prototype has been designed based on the retrieval log. This prototype aims on the simple retrieval rec- ommendation, and has been proved good effect. In the meanwhile, the BWP method has been applied in the prototype system, which im- proved the automatic level of the prototype system. And this prototype also inspects the effect of an optimized BWP method.
作者 边鹏 苏玉召
出处 《图书情报工作》 CSSCI 北大核心 2012年第9期31-36,41,共7页 Library and Information Service
关键词 WEB日志挖掘 推荐系统 个性化 最佳聚类数 Web log mining recommendation system personalization optimal cluster number
  • 相关文献

参考文献30

  • 1苏玉召,赵妍.个性化关键技术研究综述[J].图书与情报,2011(1):59-65. 被引量:10
  • 2Billsus D, Pazzani M. A personal news agent that talks, learns and explains[ C]//Proceedings of the 3rd Int ernational. Conference. on Autonomous Agents ( Agents ' 99 ). Seattle: Association for Computing Mechinery, 1999:268 - 275.
  • 3Sinha R, Swearingen K. Comparing recommendations made by online systems and friends [C]//Proceedings of the DELOS-NSF Workshop on Personalization and Recommender Systems in Digital Libraries. Dublin:Springer, 2001.
  • 4Forsati R, Meybodi M R, Neiat A G. Web page personalization based on weighted association rules [ C ]. International Conference on Electronic Computer Technology. Macao : IEEE Computer Society. 2009:130 - 135.
  • 5Burke R. Hybrid Web recommender systems [ C ]//Brusilovsky P, Kobsa A, Nejdl W. The Adaptive Web: Methods and Strategies of Web Personalization. Lecture Notes in Computer Science, 2007 (4321) :377 -408.
  • 6Ardissono L, Gena C, Torasso P, et al. User modeling and recommendation techniques for personalized dectronic program guides[ C ]//Personalized Digital Television. Targeting Programs to Individual Users. Dordrecht Kluwer Academic Publishers, 2004(1):3-26.
  • 7Taghipour N, Kardan A. A hybrid Web recommender system based on Q-learning [ G ]. Proceedings of the 2005 ACM symposium on Applied computing, New York : ACM, 2008 : 1164 - 1168.
  • 8Chen Wei, Zhang Lijun, Chen Chun, et al. A hybrid phonic Web news recommender system for pervasive access [ G ]. International Conference on Communications and Mobile Computing, New York : IEEE,2009:122 - 126.
  • 9李秦,郑宏.基于用户行为的全文检索系统个性化研究[J].图书馆杂志,2008,27(11):25-28. 被引量:2
  • 10Ishikawa H, Ohta M, Yokoyama S, et al. The effectiveness of Web usage mining for page recommendation and restructuring [J]. Lecture Notes in Computer Science, 2003,2593 : 253 - 267.

二级参考文献249

共引文献594

同被引文献155

引证文献4

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部