期刊文献+

CH_4在Fe(111)上解离的DFT研究 被引量:1

DFT calculation of dissociation of CH_4 on Fe(111) surface
下载PDF
导出
摘要 运用广义梯度密度泛函理论方法(density functional theory,DFT),结合周期性平板模型,研究了CH4在Fe(111)面上的解离。计算结果表明,在Fe(111)面上,CH4的第一步解离是反应的决速步,其活化能垒约为1.02eV,比Ni(111)面上CH4解离的活化能低0.34eV,说明CH4在Fe(111)面上更容易解离生成C。根据计算结果,我们可以预测,把Fe加入Ni晶体中形成的面心立方的Ni-Fe合金催化剂不能抑制C的形成,这与实验结果相一致。 A density-functional theory method was adopted to systematicall y investigate the dissociation of CH4 on Fe(111) surface.The results were compared with those obtained on pure Ni(111) surface.It shows that the first step and the fourth step of CH4 dissociation both are the rate-determining st eps with the energy barrier of about 1.04 eV,which is 0.32eV lower than that on Ni(111),indicating that C is easier to form on Fe(111) surface.Accordin g to the results,the carbon formation would not be inhibited by addition of Fe into Ni to form FCC NiFe catalyst,which is consistent with the e xperimental results.
出处 《太原理工大学学报》 CAS 北大核心 2012年第3期319-324,328,共7页 Journal of Taiyuan University of Technology
基金 国家自然科学基金资助项目(20976115) 国家自然科学青年基金资助项目(20906066)
关键词 吸附 CH4解离 活化能 FE adsorption CH4 dissociation reaction barrier Fe
  • 相关文献

参考文献28

  • 1Ashcroft A T, Cheetham A K, Green M L H,et al. Partial oxidation of methane to synthesis gas using carbon dioxide[J].Nature, 1991, 352: 225-226.
  • 2Pan W, Song C. Using tapered element oscillating microbalance for in situ monitoring of carbon deposition on nickel catalyst during COz reforming of methane [J]. Catal. Today, 2009, 148(3-4) : 232-242.
  • 3Rostrup-Nielsen J R, Hansen J H B. CO2 reforming of methane over transition metals [J]. J Catal, 1993, 144(1) :38-49.
  • 4Tomishige K, Himeno Y, Matsuo Y, et al. Catalytic performance and carbon deposition Behavior of a NiO-MgO solid solution in methane reforming with carbon dioxide under pressurized conditions [J]. Ind Eng Chem Res, 2000,39 (6): 1891-1897.
  • 5Liu D, Cheo W N E, Lim Y W Y,et al. A comparative study on catalyst deactivation of nickel and cobalt incorporated MCM-41 catalysts modified by platinum in methane reforming with carbon dioxide [J]. Catal Today,2010, 154(3-4): 229-236.
  • 6Besenbacher F, Chorkendorff I, Clausen B S, et al. Design of a surface alloy catalyst for steam reforming[J]. Science, 1998, 279(5358) : 1913-1915.
  • 7Molenbroek A M, Norskov J K, Clausen B S. Structure and reactivity of Ni-Au nanoparticle catalysts [J]. J Phys Chem B, 2001, 105(123): 5450-5458.
  • 8Rostrup-Nielsen JR, Alstrup I. Innovation and science in the process industry: steam reforming and hydrogenlysis[J]. Catal Today, 1999, 53(3): 311-316.
  • 9Alstrup I, Rostrup-Nielsen JR. Reactivity of carbon deposited on nickel-copper alloy catalysts from the decomposition of methane[J]. J Catal, 1986~ 100(2): 545-548.
  • 10Takanabe K, Nagaoka K, Nariai K, Aika K. Titaniasupported cobalt and nickel bimetallic catalysts for carbon dioxide reforming of methane[J]. J Catal, 2005, 232(2): 268-275.

二级参考文献17

  • 1Li Y D,Chen J L,Liu Ch,Qin Y N.J Catal,1998,178(1):76
  • 2Boellaard E,van der Kraan A M,Geus J W.Stud Surf Sci Catal,1995,91:931
  • 3Boellaard E,van der Kraan A M,Sommen A B P,Hoebink J H B J,Marin G B,Geus J W.Appl Catal A,1999,179(1-2):175
  • 4Lozano K,Barrera E V.J Appl Polymer Sci,2001,79:125
  • 5Dai H,Hafner J H,Rinzler A G,Colbert D T,Smalley R E.Nature,1996,384(6605):147
  • 6Bessel C A,Laubernds K,Rodriguez N M,Baker R T K.J Phys Chem B,2001,105(6):1115
  • 7Rodriguez N M,Chambers A,Baker R T K.Langmuir,1995,11(10):3862
  • 8Park C,Rodriguez N M,Baker R T K.J Catal,1997,169(1):212
  • 9Chen P,Zhang H-B,Lin G-D,Hong Q,Tsai K R.Carbon,1997,35(10-11):1495
  • 10Rao C N R,Kulkarni G U,Kannan K R,Chaturvedi S.J Phys Chem,1992,96(18):7379

共引文献11

同被引文献8

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部