摘要
讨论了一类拟线性粘弹性方程在半离散和全离散格式下的带约束的旋转Q1非协调有限元逼近.通过运用该元的相容误差可达到O(h2)阶分别导出了L2模和H1模意义下的最优收敛阶和超逼近性.对于提出的全离散逼近格式,得到了最优误差估计.
In this paper, the constrained rotated Q1 nonconforming finite element approximation is discussed for a class of quasi-linear viscoelasticity equations under semi-discrete and fully-discrete schemes. Based on the compatibility error of the element is of order O(h^2), the optimal convergence order and superclose property in L^2 and broken H^1 norms are derived, respectively. The optimal order error estimate is also obtained for a proposed fully-discrete approximation scheme.
出处
《河南师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2012年第2期26-30,共5页
Journal of Henan Normal University(Natural Science Edition)
基金
国家自然科学基金(10971203)
高等学校博士学科点专项科研基金(20094101110006)
河南省教育厅自然科学基金(2010A110018
2011A110020
12A110021)
关键词
拟线性粘弹性方程
带约束的旋转Q1非协调元
最优误差估计和超逼近性
半离散和全离散格式
quasi-linear viscoelasticity equations
the constrained rotated Q1 nonconforming finite element
the optimal order error estimate and superclose property
semi-discrete and fully-discrete schemes