期刊文献+

基于数学规划的平行机批量调度固定优化算法 被引量:3

MIP based fix-and-optimize algorithm for parallel machine lot sizing and scheduling
原文传递
导出
摘要 以半导体制造行业为应用背景,研究带产能约束的平行机批量调度问题。该问题需要同时考虑基于产品加工顺序的生产准备时间约束、产品加工的时间窗约束、设备和产品的匹配约束以及设备偏好性等约束。为此,构建了混合整数规划(MIP)模型,并设计了基于MIP模型的固定优化启发式算法。该算法先按照随机设备柔性最小优先规则把设备预先分配给需要加工的产品,从而可以通过更新设备和产品匹配关系矩阵来降低子问题的求解难度;再利用基于设备分解和基于时间分解的两种分解方法,固定住MIP模型中的大部分0-1变量,从而可以有效地利用MIP求解器优化剩余的一小部分0-1变量。大量随机产生的实验算例和半导体工厂真实算例表明:该算法优于现有文献中其他基于MIP的启发式算法,特别是当算例中设备柔性较高和需求变动较大时,该算法绩效更加显著。 This paper examines the capacitated lot sizing and scheduling problem with sequence-dependent setup times, time windows, machine eligibility and preference constraints. Such problems frequently arise in the semiconductor manufacturing industry. A mixed integer programming (MIP) model is constructed with a fix-and optimize algorithm in which the machines are first pre allocated using the randomized least flexible machine rule and the machine product eligibility matrix is then updated. Machine based and time-based decomposition with most of the binary decision variables fixed in the MIP model and the rest of the decision variables determined by an MIP solver. Extensive tests show that the algorithm outperforms state-of-the-art MIP based heuristic algorithms in the literature, especially for instances with highmachine flexibility and high demand variations.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第4期436-441,共6页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金资助项目(71102011 70771058 60834004) 英特尔高等教育项目
关键词 批量调度 平行机 顺序相关生产准备时间 设备偏好性 固定优化算法 lot sizing and scheduling parallel machines sequence-dependent setup time machine preference fix-and-optimize
  • 相关文献

参考文献12

  • 1Haase K.Capacitated lot-sizing with sequence dependentsetup costs[J].OR Spectrum,1996,18(1):51-59.
  • 2Pearn W L,Chung S H,Yang M H.Minimizing the totalmachine workload for the wafer probing scheduling problem[J].IIE Transactions,2002,34:211-220.
  • 3Toledo F M B,Armentano V A.A Lagrangian-basedheuristic for the capacitated lot-sizing problem in parallelmachines[J].European Journal of Operational Research,2006,175(2):1070-1083.
  • 4Degraeve Z,Jans R.A new Dantzig-Wolfe reformulation andBranch-and-Price algorithm for the capacitated lot-sizingproblem with setup times[J].Operations Research,2007,55(5):909-920.
  • 5Wu T,Shi L,Duffie N A.An HNP-MP approach for thecapacitated multi-item lot sizing problem with setup times[J].IEEE Transactions on Automation Science andEngineering,2010,7(3):500-511.
  • 6Brahimi N,Dauzere-Peres S,Wolsey L A.Polyhedral andLagrangian approaches for lot sizing with production timewindows and setup times[J].Computers&OperationsResearch,2010,37(1):182-188.
  • 7Pinedo M L.Scheduling Theory,Algorithms and Systems[M].New York:Springer,2008:428-431.
  • 8Florian M,Lenstra J,Kan A R.Deterministic productionplanning algorithms and complexity[J].ManagementScience,1980,26(7):669-679.
  • 9Beraldi P,Ghiani G,Grieco A,et al.Rolling-horizon andfix-and-relax heuristics for the parallel machine lot-sizing andscheduling problem with sequence-dependent set-up costs[J].Computers&Operations Research,2008,35(11):3644-3656.
  • 10Sahling F,Buschkühl L,Tempelmeier H,et al.Solving amulti-level capacitated lot sizing problem with multi-periodsetup carry-over via a fix-and-optimize heuristic[J].Computers&Operations Research,2009,36(9):2546-2553.

同被引文献26

  • 1Uzsoy R,Martinvega L A,LEE C Y. Production scheduling algorithms for a semiconductor test facility[J].{H}IEEE Transactions on Semiconductor Manufacturing,1991,(04):270-280.doi:10.1109/66.97809.
  • 2Quadt D,Kuhn H. Capacitated lot-sizing and scheduling with parallel machines,back-orders,and setup carryover[J].{H}NAVAL RESEARCH LOGISTICS,2009,(04):366-384.
  • 3Song Y,Zhang M T,Zhang L. ACO algorithm for machine conversion reduction in semiconductor assembly manufacturing[A].San Jose,USA,2005.339-343.
  • 4Rajendran C,Ziegler H. Ant colony algorithms for permutation flowshop scheduling to minimize makespan/total flowtime of jobs[J].{H}European Journal of Operational Research,2004,(02):426-438.
  • 5Davis L. Handbook of genetic algorithms[M].{H}New York:Van Nostrand Reinhold,2000.
  • 6Srinivas M. Adaptive probability of crossover and mutation in genetic algorithm[J].IEEE Transactions on System Man Cyber,1994,(04):665-667.
  • 7Manikas A,Chang Y,Ferguson M.BlueL inx can benefit from innovative inventorymanagement methods for commodity forward buys[J].Omega,2011,37(4):545-554.
  • 8Senyigit E,Erol R.New lot sizing heuristics for demand and price uncertainties with service-level constraint[J].International Journal of Production Research,2012,48(2):21-44.
  • 9Chen M,Sarin S C,Peake A.Integrated lot sizing and dispatching in wafer fabrication[J].Production Planning&Control,2011,21(5):485-495.
  • 10Gren H G,Tunali S,Jans R.A review of applications of genetic algorithms in lot sizing[J].Journal of Intelligent Manufacturing,2012,21(3):575-590.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部