期刊文献+

气体流速及温度对IG-110核级石墨氧化速率的影响 被引量:4

Effects of gas flow rate and temperature on the oxidation rate of IG-110 nuclear graphite
原文传递
导出
摘要 采用热重分析方法研究了600~750℃温度范围内,空气流速在1~10L/min范围内变化时IG-110核级石墨的氧化行为,分析了气体流速和温度对氧化速率的影响,并计算了相应的氧化动力学参数。实验结果表明IG-110石墨在空气中的氧化速率同时与反应温度和气体流速成正比,其中后者的影响效应随着温度的升高而增大。但相对来讲,在实验考察范围内,气流速度对IG-110石墨氧化速率的影响作用较弱,与温度升高带来的影响相比可以忽略。 This study investigated the air oxidation behavior of IG 110 nuclear grade graphite at 600-750℃lot gas flow rates of 1-10 L/rain to calculate the kinetics parameters. The results indicate that the oxidation rate of IG-110 graphite increases with both temperature and flow rate, with the flow rate having a stronger effect at higher temperatures. However, the effect of the flow rate on the oxidation rate is much smaller than the effect of temperature.
作者 王鹏 于溯源
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第4期504-507,512,共5页 Journal of Tsinghua University(Science and Technology)
关键词 气体流速 温度 核级石墨 氧化 flow rate temperature nuclear graphite oxidation
  • 相关文献

参考文献8

  • 1Gao Z,Shi L.Thermal hydraulic transient analysis of theHTR-10[J].Nuclear Engineering and Design,2002,218(1-3):65-80.
  • 2雒晓卫,喻新利,于溯源.高温气冷堆用石墨材料的氧化性能研究[J].核动力工程,2007,28(5):50-53. 被引量:11
  • 3Blanchard A,Appendix 2:The thermal oxidation ofgraphite.in Irradiation damage in graphite due to fastneutrons in fission and fusion systems[R].VIENNA:International Atomic Energy Agency,Vienna(Austria),2000.
  • 4周湘文,王洪涛,于溯源.压缩应力下石墨IG-110热膨胀系数的测量及验证[J].核动力工程,2009,30(6):19-23. 被引量:2
  • 5Welty JR,Wicks CE,Wilson RE.Fundamentals ofmomentum,heat,and mass transfer[M].New York:JohnWiley&Sons Inc,2001.
  • 6Hurt RH,Haynes BS.On the origin of power-law kinetics incarbon oxidation[J].Proceedings of the CombustionInstitute,2005,30:2161-2168.
  • 7王鹏,于溯源.核级石墨氧化腐蚀模型研究[J].原子能科学技术,2012,46(1):84-88. 被引量:5
  • 8Contescu CI,Azad S,Miller D,et al.Practical aspects forcharacterizing air oxidation of graphite[J].Journal ofNuclear Materials,2008,381(1-2):15-24.

二级参考文献42

  • 1白新德,蔡俊,甘东文,陈鹤鸣,尤嘉辉.石墨在高纯氦中的高温氧化研究[J].原子能科学技术,1997,31(1):84-88. 被引量:2
  • 2Nightingale R E. Nuclear Graphite[M]. New York, London. Academic Press, 1962, 329-342.
  • 3Preston S D, Marsden B J. Changes in the Coefficient of Thermal Expansion in Stressed Gilsocarbon Graphite[J]. Carbon, 2006, 44 (7): 1250-1257.
  • 4Gray W J. Constant Stress Irradiation-Induced Compressive Creep of Graphite at High Fluenees[J]. Carbon, 1973, 11 (4): 383-386.
  • 5Sutton A L, Howard V C. The Role of Porosity in the Accommodation of Thermal Expansion in Graphite[J]. Journal of Nuclear Materials, 1962, 7(1): 58-71.
  • 6KISSANE M P. A review of radionuclide behaviour in the primary system of a very-high-temperature reactor [J]. Nuclear Engineering and Design, 2009, 239(12): 3 076-3 091.
  • 7FULLER L, OKOH J M. Kinetics and mechanisms of the reaction of air with nuclear grade graphites: IG-110[J]. Journal of Nuclear Materials, 1997, 240(3): 241-250.
  • 8KIMES, LEEKW, NOHC. Analysis of geometrical effects on graphite oxidation through measurement of internal surface area[J]. Journal of Nuclear Materials, 2006, 348(1-2): 174-180.
  • 9CHI S H, KIM G C. Comparison of the oxidation rate and degree of graphitization of selectedIG and NBG nuclear graphite grades[J]. Journal of Nuclear Materials, 2008, 381(1-2) : 9-14.
  • 10KIM E S, OH C H, NO H C. Experimental study and model development on the moisture effect for nuclear graphite oxidation[J]. Nuclear Technology, 2008, 164(2) : 278-285.

共引文献14

同被引文献29

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部