期刊文献+

基于AlN/LiNbO_3/diamond叠层结构的声表面波传播特性

Surface acoustic wave characteristics on an AlN/LiNbO_3/diamond layered structure
原文传递
导出
摘要 金刚石材料具有最高的声速,与压电薄膜相结合可获得高声速的声表面波器件。该文以改进的传输矩阵计算方法系统研究了12种不同边界条件下AlN/LiNbO3/diamond叠层结构的声表面波波速和耦合系数与AlN和LiNbO3厚度的关系。结果表明:AlN/LiNbO3/diamond的一阶声表面波在一定范围内可保持约9km/s的波速而不随LiNbO3和AlN的厚度而变化;其中4种结构的一阶声表面波耦合系数均可达到8%以上,且可在多种厚度组合下获得。结果显示:AlN/LiNbO3/diamond叠层结构兼具AlN/diamond结构的高声速和LiNbO3/diamond结构高耦合系数的特点,而其一阶波模的稳定波速的特点可克服现有AlN/diamond和LiNbO3/diamond结构的波速与膜厚强关联的缺点,在未来的高频率、高速率无线通信系统中具有潜在的应用价值。 Diamond has the highest acoustic wave velocity; thus a high-velocity surface acoustic wave (SAW) device should be achievable using a layered combing piezoelectric film on diamond. This study investigates the SAW propagation properties of AIN/ LiNbO_3/diamond layered structures for 12 different boundary conditions using a modified transfer matrix method. The results show that the wave velocity of the first wave mode SAW with a high velocity of about 9km/s shows only weak dependence on the A1N and LiNbO_3 film thicknesses. A high coupling coefficient of 8% can be obtained for four of the twelve conditions. This A1N/LiNbOa/ diamond layered structure is very suitable for SAW devices for high-frequency high-throughput wireless communication applications due to its unique SAW properties.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第4期544-549,共6页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金资助项目(61025021 60936002 61020106006) 国家重大科技专项(2009ZX02023-001-32011ZX02403-002)
关键词 声表面波 ALN LINBO3 金刚石薄膜 传输矩阵法 surface acoustic wave A1N LiNb03 diamond film transfer matrix method
  • 相关文献

参考文献12

  • 1Nakahata H,Fujii S,Higaki K,et al.Diamond-basedsurface acoustic wave devices[J].Semicond Sci Technol,2003,18(3):S96-S104.
  • 2Wu S,Ro R,Lin Z.Rayleigh surface acoustic wave modes of(100)ZnO films on(111)diamond[J].Appl Phys Lett,2009,94(3):0329081-3.
  • 3Benetti M,Cannata D,Pietrantonio F D,et al.Growth ofAlN piezoelectric film on diamond for high-frequency surfaceacoustic wave devices[J].IEEE Trans Ultrasonics,Ferroelec and Freq Contr,2005,52(10):1806-1811.
  • 4Iriarte G F.Surface acoustic wave propagation characteristicsof aluminum nitride thin films grown on polycrystallinediamond[J].Journal of Applied Physics,2003,93(12):9604-9609.
  • 5Dogheche E,Remiens D,Shikata S,et al.High-frequencysurface acoustic wave devices based on LiNbO3/diamondmultilayered structure[J].Appl Phys Lett,2005,87(21):2135031-3.
  • 6ZHOU Changjian,YANG Yi,ZHAN Jing,et al.Surfaceacoustic wave characteristics based on c-axis(006)LiNbO3/diamond/silicon layered structure[J].Appl PhysLett,2011,99(2):0221091-3.
  • 7Nakahata H,Hachigo A,Itakura K,et al.SAW resonatorsof SiO2/ZnO/diamond structure in GHz range[C] //ProcIEEE Freq Cont Symp,Kansas City,MO:IEEE Press,2000:315-320.
  • 8Campbell J J,William R J.A method for estimating optimalcrystal cuts and propagation directions for excitation ofpiezoelectric surface waves[J].IEEE Trans on Sonics andUltrasonics,1968,SU-15(4):209-217.
  • 9Nakahata H,Hachigo A,Higaki K,et al.Theoretical studyon saw characteristics of layered structures including adiamond layer[J].IEEE Trans Ultrason,Ferroelec andFreq Contr,1995,42(2):362-375.
  • 10Hashimoto K,Yamaguchi M.Free software products forsimulation and design of surface acoustic wave and surfacetransverse wave devices[C] //Proc IEEE Freq Contr Symp.Honolulu:IEEE Press,1996:300-307.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部