期刊文献+

基于优化检测网络和MLP特征改进发音错误检测的方法 被引量:2

Mispronunciation detection with an optimized detection network and multi-layer perception based features
原文传递
导出
摘要 该文基于优化的检测网络和多层感知(multi-layerperception,MLP)特征,提出一种可以更加准确地检测出错误发音类型的方法。首先,从第二语言学习的语音库中提取出基本的发音规则以及组合的发音规则,并相应地计算它们发生的先验概率,再将这些具有先验概率的规则用于构建基于多发音的扩展检测网络。然后在检测过程中,引入基于发音特征的MLP特征来描述发音概率,替代了传统的语音声学特征。最后使用基于MLP特征的GMM-HMM框架从检测网络中识别出最可能的发音音素串。实验表明:该方法将音素识别正确率提高了3.11%,错误类型准确率提高了7.42%。 This paper describes an optimized detection network for multi-layer pereeptron (MLP) features to more accurately capture mispronunciations. First, the basic and combined phonological rules are extracted from the L2 speech corpus with computation of their prior probability of occurrence. The prior probability rules are then used to build a multiple pronunciation based extended detection network. Then, articulatory based MLP features are introduced to describe the pronunciation probability instead of the conventional speech acoustic features during detection. Finally, the GMM-HMM framework with MLP features is used to pick the most probable pronunciation phoneme sequences from the detection network. Tests show that this approach improves phoneme recognition accuracy by 3.11% and the mispronunciation type accuracy by 7.42%.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第4期557-560,570,共5页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金资助项目(60931160443,90920302,N-CUHK414/09) 国家科技支撑计划项目(2009BAH41B01)
关键词 发音错误检测 发音规则 多层感知(MLP) 发音特征 mispronunciation detection phonological rules multi-layerperceptron (MLP) articulatory feature
  • 相关文献

参考文献9

  • 1Eskenazi M.An overview of spoken language technology foreducation[J].Speech Communication,2009,51(10):823-844.
  • 2QIAN Xiaojun,Meng H,Soong F.Capturing L2segmentalmispronunciations with joint-sequence models inComputer-Aided Pronunciation Training(CAPT)[C]//Proceedings on 7th Chinese Spoken Language Processing(ISCSLP).Tainan,China:IEEE Press,2010:84-88.
  • 3Yoon S Y,Hasegawa-Johnson M,Sproat R.Landmark-based automated pronunciation error detection[C]//Proceedings on Interspeech.Tokyo:InternationalSpeech Communication Association,2010:614-617.
  • 4ZHANG Feng,HUANG Chao,Soong F,et al.Automaticmispronunciation detection for Mandarin[C]//Proceedingson ICASSP.Piscataway,USA:IEEE Press,2008:5077-5080.
  • 5WEI Si,HUA Guoping,HU Yu,et al.A new method formispronunciation detection using Support Vector Machinebased on Pronunciation Space Models[J].SpeechCommunication,2009,51(10):896-905.
  • 6Meng H,Lo Y Y,Wang L,et al.Deriving salient learners'mispronunciations from cross-language phonologicalcomparisons[C]//Proceedings on ASRU.Kyoto:IEEEPress,2007:437-442.
  • 7Harrison A M,Lau W Y,Meng H,et al.Improvingmispronunciation detection and diagnosis of learners'speechwith context-sensitive phonological rules based on languagetransfer[C]//Proceedings on Interspeech.Brisbane:International Speech Communication Association,2008:2787-2790.
  • 8Lo W K,ZHANG Shuang,Meng H.Automatic derivation ofphonological rules for mispronunciation detection in acomputer-assisted pronunciation training system[C]//Proceedings on Interspeech.Makuhari,Japan:InternationalSpeech Communication Association,2010:765-768.
  • 9Allauzen C,Riley M,Schalkwyk J,et al.OpenFst:Ageneral and efficient weighted finite-state transducer library[J].Computer Science,2007,4783:11-23.

同被引文献14

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部