期刊文献+

结合Kinect深度图的快速视频抠图算法 被引量:16

Quick matting for videos based on depth images of the Kinect
原文传递
导出
摘要 现有视频抠图算法主要存在人机交互繁琐、计算复杂度高的问题,为此,该文提出了一种利用Kinect深度图的新的快速视频抠图算法。首先结合彩色图信息改进区域生长算法,估计出三色图(原始图像被3种颜色标记出前景、背景和未知区域)以避免深度图中遮挡区域的影响。其次,提出前景和背景样本点集二次筛选机制,保证估计精度的同时大幅降低计算复杂度。最后,采用深度、彩色和置信度图对抠图结果进行加权滤波,减少不透明度图像中低置信度的像素点和不平滑区域。实验结果证明了该算法精度高、速度快且交互简单。 Video matting can be computationally expensive, This paper presents a quick matting algorithm for videos based on depth images of the Kineet. First, the color image information is used to improve the region-growth process to estimate the trimap (marked as the foreground, the background and unknown regions). This scheme avoids the effect of occlusion regions. Secondly, samples refinement of the foreground and background regions is used to preserve the accuracy of the matting results while reducing the computational cost. Finally, the depth, color and confidence image are combined into a weighting filter to smooth the matting results and reduce the number of low confidence pixels. Tests verify the accuracy and speed of this algorithm.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第4期561-565,570,共6页 Journal of Tsinghua University(Science and Technology)
关键词 视频抠图 Kinect深度图 三色图生成 样本点集筛选 加权滤波 video matting Kinect depth image trimap generation samples refinement weighting filter
  • 相关文献

参考文献9

  • 1Wang J,Cohen M F.Image and video matting:A survey[J].Foundations and Trends(R)in Computer Graphics and Vision,2007,3(2):97-175.
  • 2Wang O,Finger J,Yang Q,et al.Automatic natural video matting with depth[C]//Proc of Pacific Graphics.Hawaii,USA:IEEE Press,2007:469-472.
  • 3Zhu J,Liao M,Yang R,et al.Joint depth and alpha matte optimization via fusion of stereo and time-of-flight sensor[C]//Proc of CVPR.Florida,USA:IEEE Press,2009:453-460.
  • 4Cho J H,Ziegler R,Gross M,et al.Improving alpha matte with depth information[J].IEICE Electronics Express,2009,6(22):1602-1607.
  • 5Sun W,Au O C,Xu L,et al.Adaptive depth map assisted matting in3Dvideo[C]//Proc of ICME.Barcelona,Spain:IEEE Press,2011:1-6.
  • 6Chuang Y Y,Curless B,Salesin D H,et al.A Bayesian approach to digital matting[C]//Proc of CVPR.HI,USA:IEEE Press,2001:264-271.
  • 7Levin A,Lischinski D,Weiss Y.A closed form solution to natural image matting[C]//Proc of CVPR.NY,USA:IEEE Press,2006:228-242.
  • 8Wang J,Cohen M F.Optimized color sampling for robust matting[C]//Proc.of CVPR.Minneapolis,USA:IEEE Press,2007:1-8.
  • 9Rhemann C,Rother C,Wang J,et al.A perceptually motivated online benchmark for image matting[C]//Proc of CVPR.Florida,USA:IEEE Press,2009:1826-1833.

同被引文献129

  • 1刘丽君,骆婷.插值法在图像处理中的应用[J].硅谷,2009,2(9):9-10. 被引量:9
  • 2胡仕玲,顾爽,陈启军.基于HOG的物体分类方法[J].华中科技大学学报(自然科学版),2011,39(S2):124-126. 被引量:7
  • 3HUANG TieTie1,2,3, WU PuXun2,3 & YU HongWei2,3 1Department of Physics, Xiangnan College, Chenzhou 423000, China,2Department of Physics and Institute of Physics, Hunan Normal University, Changsha 410081, China,3Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha 410081, China.Observations favor the crossing of phantom divide lines[J].Science China(Physics,Mechanics & Astronomy),2010,53(3):562-566. 被引量:6
  • 4喻学锋,杨宣东,李凯扬,何洪林,郑晓华,李茂进,袁嘉骥,胡红跃,吴大顺,施凯弟,王荣华,张勇刚.一种基于B/S模式的PACS的研究与实现[J].生物医学工程学杂志,2004,21(3):391-393. 被引量:19
  • 5黄诚,刘华平,左小五,朱记全,胡才红,孙富春.基于Kinect的人机协作[J].中南大学学报(自然科学版),2013,44(S1):386-393. 被引量:10
  • 6冯少荣.决策树算法的研究与改进[J].厦门大学学报(自然科学版),2007,46(4):496-500. 被引量:67
  • 7E. Suma, B. Lange, A. Rizzo, D. Krum, and M. Bolas. FAAST: The Flexible Action and Articulated Skeleton Toolkit, Proceedings of IEEE Virtual Reality[ C]. 2011. 247 -248.
  • 8林填锋,杨洁霞.基于Kinect的人体识别技术的一些改进[J].电脑知识与技术,2012,8(21):5220-5223.
  • 9Microsoft MSDN. Kinect for Windows SDK[EB/OL]. [2012-10-10]. http://msdn, microsoft, com/en-us/li- brary/hh855347, aspx.
  • 10PetzoldC.WindowsPresentationFoundation程序设计指南(美)[M].北京:电子工业出版社,2008.

引证文献16

二级引证文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部