期刊文献+

最小权度的网络构建问题

Network Construction Problem of Minmum Weighted Degree
下载PDF
导出
摘要 网络构建问题是组合最优化中的经典问题,而连通性是网络设计问题中的一个核心问题。考虑这样一个最优化问题:给定无向图G=(V,E;w),w:E→Q^+是权重函数,G'=(V,E')为G的一个子图,要寻找E的一个子集E"(?)E,使得由E'UE"所得的诱导子图是一个连通图,其目标是使得所有方案中权度最大者的权度值达到最小。经过对问题分析,对问题的特殊情况E'=φ,设计了两个时间复杂度分别为O(n^2)和O(mn)的启发式算法,而E"≠φ的情况也可以类似讨论。 Network construction problem is a classic one in combinatorial optimization, and the connectivity problem is one of the most important problems in network construction. We consider the following optimization problem model: gives a nondigraph G'=(V,E;w) and its subgraph G'=(V, E'), w:E → Q^+ is a cost-function. We are asked to find a subset E" CE, and the graph induced by E'∪E" is connected. The object is to minimize the maximum cost of function wd (v), where wd (v) is the weighted degree of vertex v. By analysing the problem, designs two heuristic algorithms to solve the special class of the problem if E'≠ Ф, and the problem can be similarly solved ifE'≠ Ф.
作者 李睿 吕小俊
出处 《现代计算机》 2012年第7期17-19,共3页 Modern Computer
关键词 网络构建 搜索算法 近似算法 Network Construction Scanning Algorithm Approximation Algorithm
  • 相关文献

参考文献7

  • 1M. Frier, B. Raghavachari. An NC Approximation Algorithm for the Minimun Degree Spanning Tree Problem[R]. In: Proc. of the 28th An Allerton Conference on Communication, Con- trol and Computing, 1990, : 274-281.
  • 2M. Ghodsi, H. Mahini, K. Mirjalali, S.O. Gharan, A.S. Sayedi, M.Zadimoghaddam. Spanning Tree with Minimum Weighted Degrees [J]. Information Processing Letters, 2007, 104:113 - 116.
  • 3M.X. Goemans. Minimum Bounded Degree Spanning Trees[J]. Proceeding of the 47th Annual IEEE Symposium on Founda- tions of Computer Science, 2006:273-282.
  • 4M. Singh, L.C. Lau. Approximating Minimum Bounded Degree Spanning Trees to Within One of Optimal[J]. In: Proceedings of the 39th ACM Symposium on Theory of Computing, 2007 : 661-670.
  • 5D. Cieslik. The Vertex Degree of Minimum Spanning Trees[J]. European Journal of Operational Research, 2000, 125:278 - 282.
  • 6R. Ravi. Steiner Trees and Beyond: Approximation Algorithms for Network Design[D]. Ph.D.Thesis, Department of Computer Science, Brown University, 1993.
  • 7IT. Fukunnga, H. Nagamochi. Network Design with Weighted Degree Constraints[J]. Discrete Optimization, 2010, 7:246 -255.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部