期刊文献+

基于梯度和模糊神经网络的容迟网络路由算法

DTN Routing Algorithm Based on Gradient and Fuzzy Neural Network
下载PDF
导出
摘要 高效的路由算法是保证容迟网络性能的关键技术.为提高适用于容迟网络的路由算法的性能,提出了一种基于梯度和模糊神经网络决策的容迟网络路由算法.该算法具有如下特点:改进了网络描述向量,采用节点自身信息及节点间链路状态信息来描述网络,实现对网络的全面描述;将有限历史信息的动态平均与精确预测相结合,自适应维护网络描述向量的各分量,进而为路由决策提供准确的量度;采用模糊径向基神经网络进行路由决策,实现路由决策过程的智能化;依据多跳传输成功概率引导分组沿梯度方向转发,提高分组转发效率.仿真结果表明,在同等网络条件下,该算法表现出比传染路由算法和下文感知路由算法更优异的网络性能. Efficient routing algorithm is the key to guaranteeing the performance of delay-tolerant network(DTN).In order to improve the efficiency of DTN routing algorithms,a routing algorithm based on gradient and fuzzy neural network decision is proposed.This algorithm improves the vector for network description by adopting the own information of a node and the link state information between two nodes,which enables a comprehensive description of the network.Moreover,it provides accurate measurement for routing decisions by combining the dynamic average of limited historical information with an accurate prediction and by adaptively maintaining the components of the vector.In addition,fuzzy RBF(Radical Basis function) neural network is employed in the algorithm for routing decision so as to result in an intelligent routing decision-making process,and,the successful multi-hop packet transmission probability is used to guide the forwarding along the gradient,thus improving the packet forwarding efficiency.Simulated results indicate that the proposed algorithm achieves better performance than epidemic and context-aware routing algorithms under the same network conditions.
作者 张文柱 赵贝
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第3期57-63,共7页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(61072068) 国家"973"计划项目(2009CB320404) 国家杰出青年科学基金资助项目(60725105) 长江学者和创新团队发展计划项目(IRT0852)
关键词 容迟网络 路由算法 梯度 模糊神经网络 delay-tolerant network routing algorithm gradient fuzzy neural network
  • 相关文献

参考文献11

  • 1Cerf V,Burleigh V,Hooke A,et al.Delay-tolerant networ-king architecture[R/OL].(2007-04-30)[2010-09-10].http:∥www.rfc-editor.org/rfc/rfc4838.txt.
  • 2Jones Evan P C,Li Lily,Schmidtke Jakub K,et al.Practi-cal routing in delay-tolerant networks[J].IEEE Transac-tions on Mobile Computing,2007,6(8):943-959.
  • 3Lu Xiaofeng,Hui Pan.An energy-efficient n-epidemicrouting protocol for delay tolerant networks[C]∥Pro-ceedings of the 5th IEEE International Conference on Net-working,Architecture,and Storage.Macao:IEEE,2010:341-347.
  • 4Yuan Q,Cardei I,Wu J.An effiicient prediction-basedrouting in disruption-tolerant networks[J].IEEE Tran-sactions on Parallel and Distributed Systems,2012,23(1):19-31.
  • 5段鹏瑞,马华东,罗红.基于梯度的DTN路由算法[J].北京邮电大学学报,2011,34(2):63-66. 被引量:4
  • 6Huang T K,Lee C K,Chen L J.PRoPHET+:an adaptivePRoPHET-based routing protocol for opportunistic network[C]∥Proceedings of the 24th IEEE International Confe-rence on Advanced Information Networking and Applica-tions.Perth:IEEE,2010:112-119.
  • 7Musolesi M,Hailes S,Mascolo C.Adaptive routing for in-termittently connected mobile ad hoc networks[C]∥Pro-ceedings of the Sixth IEEE International Symposium on aWorld of Wireless Mobile and Multimedia Networks.Taormina:IEEE,2005:183-189.
  • 8Poor D.Gradient routing in ad hoc networks[R/OL].(2000-12-31)[2011-02-28].http:∥www.media.mit.edu/pia/Research/ESP/texts/poorieeepaper.pdf.
  • 9Yasmeen F,Urushidani S,Yamada S.A probabilistic posi-tion-based routing scheme for delay-tolerant networks[C]∥Proceedings of the 12th International Conference on Com-puters and Information Technology.Dhaka:IEEE,2009:88-93.
  • 10Fan Yuan-yuan,Sang Ying-jun.The research of nonli-near control based on fuzzy neural network[C]∥Pro-ceedings of International Conference on Electrical andControl Engineering.Wuhan:IEEE,2010:2417-2420.

二级参考文献8

  • 1Fall K. A delay-tolerant network architecture for challenged Internets[ C]//ACM SIGCOMM 2003. Karlsruhe: ACM Press, 2003: 27-34.
  • 2Spyropoulos T, Psounis K, Raghavendra C S. Efficient routing in intermittently connected mobile networks: the single-copy case [ J ]. IEEE Trans on Network, 2008,16(1) : 63-76.
  • 3Lindgren A, Doria A, Schelen O. Probabilistic routing in intermittently connected networks[J]. ACM SIGMOBILE Mobile Computing Communications Review, 2003, 7(3) : 19-20.
  • 4Spyropoulos T, Psounis K, Raghavendra C S. Efficient routing in intermittently connected mobile networks: the multiple-copy case[ J]. IEEE Trans on Network, 2008, 16(1) : 77-90.
  • 5LeBrun J, Chuah C N, Ghosal D, et al. Knowledge- based opportunistic forwarding in vehicular wireless Ad hoe networks [ C ] //VTC 2005-Spring. Stockholm: IEEE Press, 2005 : 2289-2293.
  • 6Utku Gunay Acer. Weak state routing for large scale dynamic networks [ C ]// ACM MobiCom 2007. Montreal: ACM Press, 2007: 290-301.
  • 7Musolesi M, Mascolo C. CAR: context-aware adaptive routing for delay tolerant mobile networks [ J ]. IEEE Trans on Mobile Computing, 2009, 8 (2) : 246-260.
  • 8Jacquet P, Mans B. Routing in intermittently connected networks: age rumors in connected components [ C ] // PERCOMW 2007. New York: IEEE Press, 2007: 53- 58.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部