期刊文献+

基于AdaBoost的弱分类器选择和整合算法 被引量:6

AdaBoost-based selection of weak classifier and its conformation algorithm
下载PDF
导出
摘要 针对传统AdaBoost算法在人脸检测中训练耗时和误检率高的问题,提出一种改进的AdaBoost算法.新算法在基于PSO的AdaBoost算法基础上对弱分类器的选择和整合两个阶段进行改进.弱分类器选择阶段,在使用PSO迭代选择最佳弱分类器之前,剔除部分无用特征,缩小粒子搜索空间;弱分类器整合阶段,在采用基于核函数的非线性感知器算法优化调节弱分类器参数的过程中使用一种新的与正样本分类能力有关的弱分类器初始参数.采用基于MIT数据库的实验结果表明,本文算法比基于PSO的AdaBoost算法在检测性能上有明显提高. Aimed at the problems such as the time-consumption with the training and high mis-detection rate in the process of human face detection with traditional AdaBoost algorithm,an improved AdaBoost algorithm was presented.In this new detection algorithm,two phases of weak classifier selection and conformation were improved on the basis of PSO-based AdaBoost algorithm.In the stage of weak classifier selection,some useless features were rejected before iterative selection of the optimal weak classifier with PSO so as to decrease the search space of the particles.In the stage of weak classifier conformation,a new set of initial parameters of weak classifier,which were related with the ability of positive sample selection,was used to tune these parameters optimally with a kernel function-based nonlinear perceptron algorithm.The experiment result of MIT database indicated that,compared to the PSO-based AdaBoost algorithm,the detection capability was remarkably improved by using the algorithm presented in this paper.
出处 《兰州理工大学学报》 CAS 北大核心 2012年第2期87-90,共4页 Journal of Lanzhou University of Technology
基金 甘肃省高校研究生导师基金(1014ZTC089) 甘肃省财政厅科研项目(0914ZTB148)
关键词 人脸检测 粒子群优化算法 ADABOOST 感知器 human face detection particle swarm optimization algorithm AdaBoost perceptron
  • 相关文献

参考文献10

  • 1YANG M H,KRIEGMAN D,AHUJA N.Detecting faces inimages:a survey[J].IEEE Trans On PAMI,2002,24(1):34-58.
  • 2MORENCYA L P,SIDNERB C,LEEC C,et al.Head gesturesfor perceptual interfaces:The role of context in improving rec-ognition[J].Artificial Intelligence,2007,171(8):568-585.
  • 3BEVILANCQUA V,FILOGRANO G,MASTRONARDI G.Face detection by means of skin detection[J].Lecture Notesin Computer Science,2008,5227:1210-1220.
  • 4PALIY I.Face detection using Haar-like features cascade andconvolutional neural network[C]//Proc of 2008Conferenceon Modern Problems of Radio Engineering,Telecommunica-tions and Computer Science.Lviv-Slavsko:[s.n.],2008:375-377.
  • 5FREUND Y,SCHAPIRE R.A decision theoretic generaliza-tion of online learning and application to boosting[J].Journalof Computer and System Science,1997,55(1):119-139.
  • 6LEVI K,WEISS Y.Learning object detection from a smallnumber of examples:the importance of good features[C]//Proc of the 2004IEEE Computer Society Conference on Com-puter Vision and Pattern Recognition.Washington:[s.n.],2004:53-60.
  • 7LUUKKA P.Feature selection using fuzzy entropy measureswith similarity classifier[J].Expert Systems with Applica-tions,2010,38(4):4600-4607.
  • 8MOHEMMED A M,ZHANG M J,HOHNSTON M.Particleswarm optimization based AdaBoost for face detection[C]//Proc of the 2009IEEE Congress on Evolutionary Computa-tion.Trondheim:[s.n.],2009:2494-2501.
  • 9李闯,丁晓青,吴佑寿.一种改进的AdaBoost算法——AD AdaBoost[J].计算机学报,2007,30(1):103-109. 被引量:53
  • 10钱志明,徐丹.一种Adaboost快速训练算法[J].计算机工程,2009,35(20):187-188. 被引量:8

二级参考文献14

  • 1Sung Kahkay, Poggio T. Example-based Learning for View-based Human Face Detection[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1998, 20(1): 39-51.
  • 2Yang Ming-Hsuan, Kriegman D, Ahujua N. Detecting Faces in Images: A Survey[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2002, 24(1): 34-58.
  • 3Freund Y, Schapire R. Experiments with a New Boosting Algorithm[C]//Proc. of the 13th Conference on Machine Learning. San Francisco, USA: Morgan Kaufmann, 1996.
  • 4Viola P, Jones M. Rapid Object Detection Using a Boosted Cascade of Simple Features[C]//Proc. of IEEE Conf. on Computer Vision and Pattern Recognition. Hawaii, USA: IEEE Press, 2001.
  • 5Rafael C, Richard E, Steven L. Digital Image Processing Using Matlab[M]. [S.l.]: Prentice Hall, 2005.
  • 6Papageorgiou C P,Oren M,Poggio T.A general framework for object detection//Proceedings of the 6th International Conference on Computer Vision.Bombay,India,1998:555-562
  • 7Schneiderman H,Kanade T.A statistical method for 3D object detection applied to faces and cars//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.USA,2000:746-751
  • 8Rowley H A,Baluja S,Kanade T.Neural network-based face detection.IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(1):22-38
  • 9Viola P,Jones M.Robust real time object detection//Proceedings of the 2nd International Workshop on Statistical and Computational Theories of Vision.Vancouver,Canada,2001
  • 10Tu Zhuo-Wen,Chen Xiang-Rong,Yuille A.L.,Zhu SongChun.Image parsing:Unifying segmentation,detection,and recognition//Proceedings of the International Conference on Computer Vision.Nice,France,2003:18-25

共引文献58

同被引文献38

  • 1刘远志,潘宏侠,赵润鹏.基于OpenCV和Adaboost算法的人脸检测[J].机械管理开发,2012,27(1):185-186. 被引量:6
  • 2李闯,丁晓青,吴佑寿.一种改进的AdaBoost算法——AD AdaBoost[J].计算机学报,2007,30(1):103-109. 被引量:53
  • 3徐霞平.复杂交通环境下的人体运动目标识别算法研究[J].长沙理工大学,2012.
  • 4Yoav Freundand Robert E.Schapire. Adecision the oreticgeneralization of online learning and an application to boosting. Journal of Computer and System Sciences,55(1):119 139,August 1997.
  • 5Paul Viola,Michael Jones. Rapid Object Detection Using adaboosted Cascade of Simple Feature[C]. Computer Vision and Pattern Recognition, 2001.
  • 6Paul Viola,Michael Jones. Robust Real Time Object Detection[C]. ln:Proc. Of IEEE Workshop and Statistical and Computational Theories of Vision, 2001.
  • 7Rainer Lienhart and Jochen Maydt. An Extened Set of Haar-like Features For Rapid Object Dectection[M]. Submitted to ICIP2002.
  • 8Alexander Kuranov, Rainer Lienhart,and Vadim Pisarevsky. An Empirical Analysis of Boosting Algorithms for Rapid With An Extended Set of Haar-like Features[C]. lntel Technical Report MRL- TRJuly02-01,2002.
  • 9Valiant L G. A theory of learnable [J]. Communications of the ACM,1984,27(11):1134-1142.
  • 10Keams M J,Valiant L G. Cryptographic limitations on learning Boolean formulae and finite automata[J]. Jour- nal of the ACM(JACM),1994,41 (1):67-95.

引证文献6

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部