期刊文献+

多目标云分布估计算法

Cloud model based on multi-objective estimation of distribution algorithm
下载PDF
导出
摘要 为增强多目标分布估计算法(MEDA)的局部搜索能力,将云模型引入到多目标分布估计算法中,提出一种多目标云分布估计算法(CMEDA).该算法一方面利用分布估计的采样操作对进化种群进行搜索,另一方面利用云滴具有随机性、稳定倾向性等特点,进行外部档案搜索,实现群体间信息交换,从而提高多目标分布估计算法的全局搜索能力.数值实验选取6个常用测试函数,并与NSGA-Ⅱ和MEDA算法进行比较,结果表明,CMEDA算法在收敛性和多样性两方面都有较好的性能. In order to enhance the local search capability of multi-objective estimation of distribution algorithm(MEDA),a cloud model was introduced into this algorithm.A cloud model based on multi-objective estimation of distribution(CMEDA)was proposed.In this algorithm,the evolution population was searched with sampling operation of estimation of distribution on the one hand,and on the other hand the outer population file was searched by using the feature of cloud drop such as its randomness and tendency to stabilize.Therefore,the information exchange between the populations was realized and the global searching ability with estimation of distribution algorithm was subsequently improved.In numerical experiment six common test functions were chosen and the experiment result was compared with that of both multi-objective algorithms NSGA-Ⅱ and MEDA.The result showed that both the convergency and diversity of the CMEDA exhibited more superiority.
出处 《兰州理工大学学报》 CAS 北大核心 2012年第2期91-96,共6页 Journal of Lanzhou University of Technology
基金 国家自然科学基金(60962006 11161001) 北方民族大学科研基金项目(2011Y025)的资助
关键词 多目标优化 分布估计 云模型 multi-objective optimization estimation of distribution cloud model
  • 相关文献

参考文献24

  • 1SCHAFFER J D.Multiple objective optimization with vector e-valuated genetic algorithms[C]//Inproceedings of the 1stIEEE international conference on genetic algorithms.LawrenceErlbaum:[s.n.],1985:93-100.
  • 2HORN J,NAFPLIOTIS N,GOLDBERG D E.A niched Paretogenetic algorithm for multi-objective optimization[C]//Pro-ceedings of the 1st IEEE Conference on Evolutionary Compu-tation.Piscataw:[s.n.],1994:82-87.
  • 3SRINIVAS N,DEB K.Multi-objective function optimization u-sing non-dominated sorting genetic algorithms[J].Evolution-ary Computation,1994,2(3):221-248.
  • 4DEB K,PRATAP A,AGARWAL S,et al.A fast and elitistmulti-objective genetic algorithm:NSGA-Ⅱ[J].IEEE Trans-actions on Evolutionary Computation,2002,6(2):182-197.
  • 5ZITZLER E,THIELE L.Multi-objective evolutionary algo-rithms:a comparative case study and the strength Pareto ap-proach[J].IEEE Transactions on Evolutionary Computation,1999,3(4):257-271.
  • 6ZITZLER E,LAUMANNS M,THIELE L.SPEA2:improvingthe strength Pareto evolutionary algorithm for multi-objectiveoptimization[R].Zurich:Swiss Federal Institute of Technolo-gy,2001.
  • 7KNOWLES J,CORN E D.The Pareto archived evolutionarystrategy:A new baseline algorithm for multi-objective optimi-zation[C]//Proceedings of the Conference on EvolutionaryComputation.Piscataway,NJ:IEEE Press,1999:98-105.
  • 8COELLO C A,PULIDO G T,LECHUGA M S.Handing mul-tiple objectives with particle swarm optimization[J].IEEETransactions on Evolutionary Computation,2004,8(3):256-279.
  • 9JIAO L C,GONG M G,SHANG R H,et al.Clonal selectionwith immune dominance and anergy based multi-objective opti-mization[C]//Proceedings of 3rd International Conference onEvolutionary Multi-criterion Optimization.Berlin:Springer,2005:474-489.
  • 10GONG M G,JIAO L C,DU H F,et al.Multi-objective im-mune algorithm with non-dominated neighbor-based selection[J].Evolutionary Computation,2008,16(2):225-255.

二级参考文献47

共引文献1430

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部