期刊文献+

联图的邻点可区别无圈边染色 被引量:2

Coloring of adjacent vertex-distinguishing acyclic edge of union graphs
下载PDF
导出
摘要 根据图的邻点可区别无圈边染色的定义,利用构造的方法讨论联图Pm∨Wn、Pm∨Fn、Pm∨Pn、Pm∨Sn和Cm,n的邻点可区别无圈边染色,并给出它们的邻点可区别无圈边色数及其证明,且均满足图的邻点可区别无圈边染色猜想. According to the definition of coloring of adjacent vertex-distinguishing acyclic edge of graphs,the coloring of the adjacent vertex-distinguishing acyclic edge of union graphs Pm∨Wn,Pm∨Fn,Pm∨Pn,Pm∨Sn and Cm,n was discussed with construction method.Then the chromatic number of adjacent vertex-distinguishing acyclic edge was given and it was proved that the conjecture of satisfactory coloring of the adjacent vertex-distinguishing acyclic edge held true.
出处 《兰州理工大学学报》 CAS 北大核心 2012年第2期131-135,共5页 Journal of Lanzhou University of Technology
基金 甘肃省自然科学基金(3ZS051-A25-025)
关键词 联图 邻点可区别无圈边染色 邻点可区别无圈边色数 union graph coloring of adjacent vertex-distinguishing acyclic edge chromatic number of adjacent vertex-distinguishing acyclic edge
  • 相关文献

参考文献4

二级参考文献32

  • 1ZHANG Zhongfu, CHEN Xiang’en, LI Jingwen, YAO Bing, LU Xinzhong & WANG Jianfang College of Mathematics and Information Science, Northwest Normal University, Lanzhou 730070, China,Department of Computer, Lanzhou Normal College, Lanzhou 730070, China,Institute of Applied Mathematics, Lanzhou Jiaotong University, Lanzhou 730070, China,College of Information and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China,Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing 100080, China.On adjacent-vertex-distinguishing total coloring of graphs[J].Science China Mathematics,2005,48(3):289-299. 被引量:175
  • 2张少君,陈祥恩.两类4-正则循环图的邻点可区别全色数[J].兰州理工大学学报,2005,31(6):146-149. 被引量:7
  • 3张忠辅,李敬文,陈祥恩,程辉,姚兵.图的距离不大于β的任意两点可区别的边染色[J].数学学报(中文版),2006,49(3):703-708. 被引量:96
  • 4Alon N, McDiarmid C J H and Reed B A. Acyclic coloring of graphs. Random Structures and Algorithms, 1991, 2: 277-288.
  • 5Alon N, Sudakov B, Zaks A. Acyclic edge colorings of graphs. 2002 John Wiley & Sons, Inc. J. Graph Theory, 2001, 37(3): 157-167.
  • 6Hatami H. △+300 is a bound on the adjacent vertex distinguishing edge chromatic number. J. of Combinatorial Theory (Series B), 2005, 95: 246-256.
  • 7Zhang Z F, Liu L Z, Wang J F. Adjacent strong edge coloring of graphs. Applied Mathematics Letters, 2002, 15: 623-626.
  • 8Molloy M, Reed B. Graph Coloring and the Probabilistic Method. Berlin, Spring, 2002.
  • 9Alon N, Spencer J H. The Probabilistic Method. New York, Wiley, 1992.
  • 10Michael Krivelevich, Asaf Nachmias. Coloring complete bipartite graphs from random lists. Random Structures and Algorithms, 2006, 29: 436-449.

共引文献22

同被引文献13

  • 1邦迪JA,默蒂USR图论及其应用[M].北京:科学出版社,1984.
  • 2ZHANG Haihui. On 3-choosability of plane graphs without 5-, 8- and 9- cycles [J]. Journal of Lanzhou University Natural Scienees, 2005 (41) : 93-97.
  • 3STEINBERG R. The State of the three color problem [J]. Ann Discrete Math, 1993,55 : 211-248.
  • 4ABBOIT H L, ZHOU B. On small faces in 4-critical plane graphs [J]. Ars Combin, 1991(32) : 203-207.
  • 5BORODIN O V. Structural properties of plane graphs without adjacent triangles and an application to 3-coloring [J]. J Graph Theory, 1996,21(3) : 183-186.
  • 6SANDERS D P, ZHAO Y. A note on the three color problem [J]. Graph Comhln, 1995(11) : 91-94.
  • 7BORODIN O V. Eanar graph without cycle of Length from 4 to 7 are 3-eolorble [J]. J Combin Theory:Serie B, 2005(93): 303-311.
  • 8THOMASSEN C. 3-list-coloring planar graphs of girth 5 [J]. Journal of Combinatorial Theory:Serie B, 1995,64 ( 1 ) : 101- 107.
  • 9LAMP C B. The 3-choosability of plane graphs of girth 4 [J]. Discrete Math, 2005(294) : 297-301.
  • 10Xin-sheng Liu,Ming-qiang An,Yang Gao.An Upper Bound for the Adjacent Vertex Distinguishing Acyclic Edge Chromatic Number of a Graph[J].Acta Mathematicae Applicatae Sinica,2009,25(1):137-140. 被引量:15

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部