期刊文献+

正压大气模式下具有β效应与地形效应的Rossby孤立波 被引量:13

Solitary Rossby waves with beta effect and topography effect in a barotropic atmospheric model
下载PDF
导出
摘要 正压大气模式下,采用摄动方法和时空伸长变换推导了具有β效应、地形效应和耗散的mKdV-Burgers方程,得到Rossby孤立波振幅的演变满足带有β效应,地形与耗散的mKdV-Burgersm方程的结论.说明β效应、地形效应是诱导Rossby孤立波的重要因素. Rossby waves are the most important waves in the atmosphere and ocean,and are intrinsic to the large-scale systems in fluids.The theory and observation show that their basic characteristic satisfy the quasi-geostrophic and quasi-static equilibrium approximations.In barotropic fluid,discussed long waves in a homogeneous atmosphere and obtained the Korteweg-de Vries(KdV)equation,but the analysis was limited to the case where the velocity shear was small compared with a basic uniform zonal motion and they gave no insight pertaining to the kinds of stream-line-flow patterns accompanying these waves.An inhomogeneous modified Korteweg-de Vried(mKdV)-Burgers equation including beta effect,topography and dissipation is derived by employing the perturbation method in a barotropic atmospheric model,the inhomogeneous mKdV-Burgers equation describing the evolution of the amplitude of solitary Rossby waves as the change of Rossby parameter β(y) with latitudeytopographic forcing and dissipation is obtained.
出处 《地球物理学进展》 CSCD 北大核心 2012年第2期393-397,共5页 Progress in Geophysics
基金 内蒙古自然科学基金(NO.2011MS0112) 内蒙古教育厅基金(NJZY08005 NJ09066)资助
关键词 MKDV-BURGERS方程 β效应 地形 耗散 mKdV-Burgers equation beta effect topography dissipation
  • 相关文献

参考文献24

  • 1Long R R. Solitary waves in the westerlies. Journal of the Atmospheric Sciences, 1964, 21(2): 197-200.
  • 2Benney D J. Long non-linear waves in fluid flow. Journal of Mathematics and Physics, 1966, 45(3): 52-63.
  • 3Larsen L N. Comments on: Solitary waves in the Westerlies. Journal of the Atmospheric Science, 1965, 22(2): 222-224.
  • 4Clarke R A. Solitary and cnoidal planetary waves. Geophysical Fluid Dynamics, 1971, 2(1): 343-354.
  • 5Redekopp L G. On the theory of solitary Rossby waves. Journal of Fluid Mechanics, 1977, 82(4):725-745.
  • 6Wadati M. The modified Korteweg-de Vries equation. Journal of the Physical Society of Japan, 1973, 34(5): 1289-1296.
  • 7Redekopp L G, Weidman P D. Solitary Rossby waves in zonal shear flows and their interactions. Journal of the Atmospheric Sciences, 1978, 35(5): 790-804.
  • 8Maslowe S A, Redekopp L G. Long nonlinear waves in stratified shear flows. Journal of Fluid Mechanics, 1980, 101(2): 321- 349.
  • 9Chraney J G, Straus D M. Form-drag instability, multiple equilibria and propagating planetary waves in baroelinic, orographically forced, planetary wave systems. Journal of the Atmospheric Sciences, 1980, 37(6): 1157-1176.
  • 10Boyd J P. Equatorial solitary waves. Part 1: Rossby solitons Journal of Physical Oceanography, 1980, 10 (11) : 1699- 1718.

二级参考文献118

共引文献56

同被引文献55

引证文献13

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部