期刊文献+

High-performance traveling-wave electroabsorption modulators utilizing mushroom-type waveguide and periodic transmission line loading 被引量:1

High-performance traveling-wave electroabsorption modulators utilizing mushroom-type waveguide and periodic transmission line loading
原文传递
导出
摘要 For the first time, periodic loaded electrodes and mushroom-type waveguide are combined to improve the performance of traveling-wave electroabsorption modulators (TWEAMs) based on the asymmetric intra-step-barrier coupled double strained quantum well (AICD-SQW). The electrical modulation response of periodic mushroom-type TWEAM is obtained by using equivalent circuit model, and is compared with simulation result of conventional mushroom-type TWEAM counterpart. The equivalent circuit model simulation results indicate that for the exemplary modulation length of 300 mm, the mushroom-type TWEAM with periodic transmission line loading can achieve much wider bandwidth about 99.7 GHz and 43.1 GHz than the conventional counterpart with about 43 GHz and 33 GHz for 35 W and 45 W terminations, respectively. For the first time, periodic loaded electrodes and mushroom-type waveguide are combined to improve the performance of traveling-wave electroabsorption modulators (TWEAMs) based on the asymmetric intra-step-barrier coupled double strained quantum well (AICD-SQW). The electrical modulation response of periodic mushroom-type TWEAM is obtained by using equivalent circuit model, and is compared with simulation result of conventional mushroom-type TWEAM counterpart. The equivalent circuit model simulation results indicate that for the exemplary modulation length of 300 μm, the mush- room-type TWEAM with periodic transmission line loading can achieve much wider bandwidth about 99.7 GHz and 43.1 GHz than the conventional counterpart with about 43 GHz and 33 GHz for 35 Ωand 45 Ωterminations, respectively.
作者 Kambiz Abedi
出处 《Optoelectronics Letters》 EI 2012年第3期176-178,共3页 光电子快报(英文版)
  • 相关文献

参考文献11

  • 1L. P. Hou Li, W. Wang and H. L. Zhu, Optoelectron. Lett. 1, 83 (2005).
  • 2Y.-J. Chiu, H.-F. Chou, V. Kaman, P. Abraham and J. E. Bowers, IEEE Photon. Technol. Lett. 14, 792 (2002).
  • 3S. Irmscher, R. Lewen and U. Eriksson, IEEE Photon. Technol. Lett. 14, 923 (2002).
  • 4J. Lim, Y.-S. Kang, K.-S. Choi, J.-H. Lee, S.-B. Kim and J. Kim, IEEE J. Lightw. Technol. 21, 3004 (2003).
  • 5R. Lewén, S. Irmscher and U. Eriksson, IEEE Trans. Microwave Theory Technol. 51, 1117 (2003).
  • 6R. Lewén, S. Irmscher, U. Westergren, L. Thylén and U. Erikssons, IEEE J. Lightw. Technol. 22, 172 ( 2004).
  • 7G. L. Li, T. G. B. Mason and P. K. L. Yu, IEEE J. Lightw. Technol. 22, 1789 ( 2004).
  • 8Y. Tang, Y. Yu, Y. Ye, U. Westergren and S. He., Opt. Commun. 281, 5177 (2008).
  • 9K. Abedi, V. Ahmadi, E. Darabi, M. K. Moravvej-Farshi and M. H. Sheikhi, Solid State Electron. 53, 312 (2008).
  • 10K. Abedi, Eur. Phys. J. Appl. Phys. 56, 10403 (2011).

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部