期刊文献+

A unified canopy bidirectional reflectance (BRDF) model for row ceops 被引量:3

A unified canopy bidirectional reflectance (BRDF) model for row ceops
原文传递
导出
摘要 Row sowing is a basic crop sowing method in China,and thus an accurate Bidirectional Reflectance Distribution Function (BRDF) model of row crops is the foundation for describing the canopy bidirectional reflectance characteristics and estimating crop ecological parameters.Because of the macroscopically geometric difference,the row crop is usually regarded as a transition between continuous and discrete vegetation in previous studies.Were row treated as the unit for calculating the four components in the Geometric Optical model (GO model),the formula would be too complex and difficult to retrieve.This study focuses on the microscopic structure of row crops.Regarding the row crop as a result of leaves clumped at canopy scale,we apply clumping index to link continuous vegetation and row crops.Meanwhile,the formula of clumping index is deduced theoretically.Then taking leaf as the basic unit,we calculate the four components of the GO model and develop a BRDF model for continuous vegetation,which is gradually extended to the unified BRDF model for row crops.It is of great importance to introduce clumping index into BRDF model.In order to evaluate the performance of the unified BRDF model,the canopy BRDF data collected in field experiment,"Watershed Allied Telemetry Experiment Research (WATER)",from May 30th to July 1st,2008 are used as the validation dataset for the simulated values.The results show that the unified model proposed in this paper is able to accurately describe the non-isotropic characteristics of canopy reflectance for row crops.In addition,the model is simple and easy to retrieve.In general,there is no irreconcilable conflict between continuous and discrete vegetation,so understanding their common and individual characteristics is advantageous for simulating canopy BRDF.It is proven that the four components of the GO model is the basic motivational factor for bidirectional reflectance of all vegetation types. Row sowing is a basic crop sowing method in China,and thus an accurate Bidirectional Reflectance Distribution Function (BRDF) model of row crops is the foundation for describing the canopy bidirectional reflectance characteristics and estimating crop ecological parameters.Because of the macroscopically geometric difference,the row crop is usually regarded as a transition between continuous and discrete vegetation in previous studies.Were row treated as the unit for calculating the four components in the Geometric Optical model (GO model),the formula would be too complex and difficult to retrieve.This study focuses on the microscopic structure of row crops.Regarding the row crop as a result of leaves clumped at canopy scale,we apply clumping index to link continuous vegetation and row crops.Meanwhile,the formula of clumping index is deduced theoretically.Then taking leaf as the basic unit,we calculate the four components of the GO model and develop a BRDF model for continuous vegetation,which is gradually extended to the unified BRDF model for row crops.It is of great importance to introduce clumping index into BRDF model.In order to evaluate the performance of the unified BRDF model,the canopy BRDF data collected in field experiment,"Watershed Allied Telemetry Experiment Research (WATER)",from May 30th to July 1st,2008 are used as the validation dataset for the simulated values.The results show that the unified model proposed in this paper is able to accurately describe the non-isotropic characteristics of canopy reflectance for row crops.In addition,the model is simple and easy to retrieve.In general,there is no irreconcilable conflict between continuous and discrete vegetation,so understanding their common and individual characteristics is advantageous for simulating canopy BRDF.It is proven that the four components of the GO model is the basic motivational factor for bidirectional reflectance of all vegetation types.
出处 《Science China Earth Sciences》 SCIE EI CAS 2012年第5期824-836,共13页 中国科学(地球科学英文版)
基金 supported by National Natural Science Foundation of China (Grant Nos. 91025006, 40730525, 40871186 and 40801125) Special Funds for National High Technology Research and Development Program of China (Grant Nos. 2009AA12Z143 and 2009A122103) Major State Basic Research Project (973) (Grant No. 2007CB714402) "Simultaneous Remote Sensing and Ground-based Experiment in Heihe River Basin and Comprehensive Platform Construction" in the Chinese Academy of Sciences’ Action-Plan for West Development (the second phase) (Grant No. KZCX2-XB2-09)
  • 相关文献

参考文献2

二级参考文献39

共引文献134

同被引文献18

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部