期刊文献+

LLE算法及其在手写文字识别中的应用 被引量:4

LLE Algorithm and Its Application in Handwriting Character Recognition
下载PDF
导出
摘要 手写体识别有着广阔的应用前景和很高的理论价值,其主要分为在线识别和离线识别两种。在分析局部线性嵌入算法LLE和文字识别过程的基础上,实现了整个手写文字识别过程,包括图像获取、预处理、特征提取、分类、LLE降维、识别输出等过程。通过文字的相容度试验,确定了本过程的有效性。 The recognition of the handwriting form has the broad application prospects and the very high theory val- ue. The recognition of the handwriting mainly divides into two kinds, namely on-line recognition and off-line recogni- tion character. Firstly, this paper studies the local linear embedding algorithm. Secondly, this paper designs to com- plete the entire process of character recognition. It includes image acquisition, pretreatment, feature extraction, clas- sification, LLE dimensionality reduction, the process of identifying, etc. Finally, the experimental data shows good re- suits.
出处 《河北联合大学学报(自然科学版)》 CAS 2012年第2期52-55,共4页 Journal of Hebei Polytechnic University:Social Science Edition
关键词 LLE算法 手写文字识别 降维 LLE algorithm Handwriting recognition Dimensionality reduction
  • 相关文献

参考文献4

  • 1S T Roweis,L K Saul.Nonlinear Dimensionality Reduction by Locally Linear Embedding[J].Science,2000,(290):2323-2326.
  • 2Kouropteva O,Okun O,Hadid A,et al.Beyond locally linear embedding algorithm.Technical Report MVG-01-2002,Machine Vision Group,Univer-sity of Oulu,Finland,2002.
  • 3边肇棋,张学工.模式识别[M].北京:清华大学出版社,2001.
  • 4谭璐,吴翊,易东云.稳健局部线性嵌入方法[J].国防科技大学学报,2004,26(6):91-95. 被引量:13

二级参考文献8

  • 1Jolliffe I T.Principal Component Analysis [M].Springer-Verlag,New York,1989.
  • 2Cox T,Cox M.Multidimensional Scalling [M].Chapman & Hall,London,1994.
  • 3Balakrishnama S,Ganapathiraju A.Linear Discriminant Analysis-A Brief Tutorial [A].Institute for Signal and information Processing,March 2,1998.Http://www.isip.msstate.edu/publications/reports/isipinternal/1998/lineardiscrimanalysis/ldatheory.pdf.
  • 4He X F,Niyogi P.Locality Preserving Projections (LPP) [R].Technical Report,TR-2002-09,Computer Science Department,the University of Chicago.
  • 5Roweis S T,Saul L K.Nonlmensionality Reduction by Locally Linear Embedding [J].Science,2000,290(22).
  • 6Bekin M,Niyogi P.Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering [A].Advances in Neural Information Processing Systems 15,Vancouver,British Columbia,Canada,2001.
  • 7Roweis S T,Saul L K.Think Globally,Fit Locally: Unsupervised Learning of Nonlinear Manifolds [R].Technical Report MS CIS-02-18,and University of Pennsylvania,2002.
  • 8Donoho D L,Grimes C.Hessian Eigenmaps: New Locally Linear Embedding Techniques for High-dimensional Data [R].Technical Report,Department of Statistics,Stanford University,2003.

共引文献13

同被引文献34

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部