期刊文献+

Hermite矩阵特征值新的相对扰动界

New Relative Perturbation Bounds of Hermite Matrices
原文传递
导出
摘要 利用矩阵的Schur三角分解,研究了一类特殊矩阵的扰动问题,得到了Hermite矩阵特征值的扰动界,所得定理推广并彻底改进了以前的结论。 Using the Schur triangular factorization for matrix, the perturbation issue of a kind of special matrices is studied, and the perturbation bounds of Hermite matrices are obtained. The obtained theorem promotes and improves the previous results.
作者 孔祥强
机构地区 菏泽学院数学系
出处 《电子技术(上海)》 2012年第4期1-2,共2页 Electronic Technology
基金 2011年山东省统计局重点课题项目(KT11048) 2011年山东省教育科学"十二五"规划重点课题项目(2011GG049)
关键词 HERMITE矩阵 Schur三角分解 相对扰动 Hermite matrix Schur triangular factorization relative perturbation
  • 相关文献

参考文献4

二级参考文献13

  • 1Eisenstat G, Ilse G F Ipsen. Three Absolute Perturbation Bounds for Matrix Eigenvalues Imply Relative Bounds. SIAM J. Matrix Anal. Appl., 1998, 20(1): 149=-.158.
  • 2Elsener L, Friedland S. Singular Values, Doubly Stochastic Matrices and Applications. Linear Algebra Appl., 1995, 220:161-169.
  • 3Li R C. Relative Perturbation Theory (I): Eigenvalue and Singular Value Variations. SIAM J. Matrix Anal. Appl., 1998, 19:956-982.
  • 4Li R C. Relative Perturbation Theory (Ⅰ); Eigenvalue Variations. LAPACK working note 84, Computer Science Department, University of Tennessee, Knoxville, Revised May, 1997.
  • 5Horn R A, Johson C R. Topics in Matrix Analysis. Cambridge: Cambridge University Press, 1991.
  • 6Ilse C F Ipsen. Relative Perturbation Results for Matrix Eigenvalues and Singular Values. Acta Numerica, 1998:151-201.
  • 7Zhang Z. On the Perturbation of Eigenvalues of a Non-defective Matrix. Math. Numer. Sinica, 1986,6(1): 106-108.
  • 8LI R C.Relative perturbation theory:Ⅰ.eigenvalue and sigular value variations[J].SIAM J Matrix Anal Appl,1998,19(4):956-982.
  • 9LI R C.Relative perturbation theory:(Ⅰ)Eigenvalue and singular value variations[R/OL].Berkeley:Department of EECS,University of California,http:∥www.netlib.org/lapack/lawns/lawn84.ps,January,1996.
  • 10LI Chi-Kwong,MATHIAS Roy,The Lidskii-Mirsky-Wielandt theorem-additive and multiplicative versions[J].Numer Math,1998,81:377-413.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部