摘要
橘青霉以麦糟为唯一碳源培养时,阿魏酸酯酶的最佳发酵时间为60 h,其酶活力可达40.8 mU/mL。在pH值为5.0、45℃、料液比1∶30(g∶mL)条件下,取47.5 U/mL的木聚糖酶粗酶液15 mL,加入1.0 g麦糟的乙醇不溶物,反应12 h后,加入40.8 U/mL的阿魏酸酯酶粗酶液15 mL再反应12 h,阿魏酸和低聚木糖释放率分别为54.1%和161 mg/g(麦糟的乙醇不溶物)。实验结果还表明,阿魏酸酯酶与木聚糖酶存在协同作用,能极大提高麦糟中阿魏酸及低聚木糖的释放率,有利于麦糟的降解。
The optimal fermentation time ofPenicillium citrinum feruloyl esterase ( PcFAE ) was 60 h and its activity was 40.8 mU/mL when the Brewers' Spent Grain ( BSG ) was used as the sole carbon source for Penicillium citrinum. One gram of alcohol-insoluble residue ( AIR ) of Brewers'spent grain ( BSG ) was processed by the solution of crude xylanase ( XG180 ) ( 47.5 U/mL, 15 mL ) for 12 hours at the condition of the material-liquid ratio 1 : 30( W/V ), pH 5.0 and 45 ℃, respectively. And then the solution of crude PcFAE ( 40.8 mU/mL )was added and the sample was processed for another 12 h. The maximum release rate of Ferulic acid ( FA ) was 54.1% and the release amount of xylooligosaccharide (XOS) was 161 mg/g (BSG-AIR), respectively. The results of our experiments showed that the release rate of FA and XOS from BSG-AIR increased significantly as the PcFAE could coordinate with the xylanase and enzymolysis process was also conducive to the degradation of BSG.
出处
《化工进展》
EI
CAS
CSCD
北大核心
2012年第5期1096-1102,1108,共8页
Chemical Industry and Engineering Progress
基金
华侨大学人才启动基金(11BS221)
福建省科技重点项目(2011N0020)
关键词
阿魏酸酯酶
木聚糖酶
麦糟
生物降解
feruloyl esterases
xylanase
brewers' spent grain
biodegradation