期刊文献+

多晶形γ-CuI晶体的制备与导电性能表征

Preparation and Conductivity Characterization of γ-CuI Crystal with Different Morphologies
下载PDF
导出
摘要 以粗碘和硫酸铜为原料,水合肼为还原剂,利用液相法和微乳液法合成了不同晶形γ-CuI晶体。采用XRD和SEM研究了液相法和微乳液工艺技术条件对合成γ-CuI微观结构的影响,分析了具有不同微观结构γ-CuI对其导电性能的影响。结果表明,分别以聚乙二醇(PEG-6000)和柠檬酸为表面活性剂,采用液相法常温下500 r/min反应30 min可制备出纳米球形和三角锥形γ-CuI。按CTAB-正戊醇-环己烷-水配比3∶3∶7∶10分别配制硫酸铜和碘化铵微乳液,常温下500 r/min反应2 h可制备出六边形薄片状γ-CuI。不同微观形貌和粒径分布对γ-CuI产品电导率具有较大的影响。纳米球形γ-CuI电导率最小,为4.9Ω.cm。 The γ-CuI crystals with different morphologies were prepared using crude iodine and CuSO4 as raw material,N2H4· H2O as reducing agent by liquid phase method and micro-emulsion technique respectively.The effect of liquid phase method and micro-emulsion technique conditions on the microstructure of γ-CuI crystals were studied by XRD and SEM techniques,and the influence of different morphologies on the conductivity of γ-CuI crystal was also analyzed.The results indicated that γ-CuI crystals with nano spherical and triangular pyramidal shapes were prepared respectively by using the liquid phase method,at 500 r/min for 30 min,PEG-6000 and citric acid as surfactants respectively.The γ-CuI crystal with hexagon shape was synthesized from the CuSO4 and NH4I solution prepared by controlling the CTAB: n-pentanol: cyclohexane: water(volume ratio) of 3∶3∶7∶10 respectively,at 500 r/min for 2 h.Different morphologies and crystal sizes had great impact on the conductivity of γ-CuI,and the γ-CuI crystal with nano spherical shape has the lowest conductivity of 4.9 Ω·cm.
出处 《人工晶体学报》 EI CAS CSCD 北大核心 2012年第2期461-467,共7页 Journal of Synthetic Crystals
基金 贵州省科学技术基金项目(黔科合J字[2011]2017) 贵州大学博士启动基金项目(2010-014) 贵州省绿色化工创新人才团队项目 贵州瓮福集团产学研合作项目
关键词 γ-CuI晶体 电导率 液相法 微乳液法 γ-CuI crystal conductivity liquid phase method micro-emulsion technique
  • 相关文献

参考文献12

  • 1Chahid A,McgreevyR L.Disorder in the Fast Ion Conductor CuI[J].Phys.Rev.B,1997,234:87-88.
  • 2Bouhafs B,Heireche H,Sekkal W,et al.Calculation of the Electronic and Elastic Properties of Carbon[J].Phys.Lett.A,1998,240-257.
  • 3Sekkal W,Zaoui A.Pressure-induced Softening of Shear Modes in Wurtzite ZnO[J].Physica B,2002,315-201.
  • 4Ferhat M,Zaoui A.First-principles Study of Structural and Electronic Properties of BSb[J].Phys.Lett.A,1996,216-187.
  • 5Tennakone K,Kumarasinghe A R,Wijayantha K U G.International Conference on Photochemical Conversion and Storage of Solar Energy[J].Semicond.Sci.Technol.,1995,10:1689-1690.
  • 6Bardeen J,Less J.Common Metals[J].Phys.Lett.A,1978,62:447-455.
  • 7Kumara G R A,Konno A,Shiratsuchi K,et al.Dye-Sensitized Solid-State Solar Cells:Use of Crystal Growth Inhibitors for Deposition of the Hole Collector[J].Chem.Mater.,2002,14(3):954-955.
  • 8崔玉杰,潘建国,杨书颖,赵玲燕,李月宝,李星.超快闪烁晶体碘化亚铜的生长研究[J].人工晶体学报,2010,39(5):1109-1113. 被引量:2
  • 9李静,贾会敏,郑直.微波法制备三角锥形碘化亚铜微纳米晶体[J].化学世界,2010,51(7):395-397. 被引量:3
  • 10宋森,杨胜林,李光,江建明.纳米导电粉体CuI的制备及其结构性能研究[J].东华大学学报(自然科学版),2004,30(5):97-101. 被引量:3

二级参考文献49

  • 1宋森,杨胜林,李光,江建明.微细导电粉体碘化亚铜在乙二醇中的分散性研究[J].功能高分子学报,2004,17(2):215-219. 被引量:3
  • 2Bouhafs B,Heireche H,Sokkal W.Physics Letters A[J].1998,240,257.
  • 3Yang L,Zhang Z X,Fang S H,et al.Solar Energy[J].2007,81:717.
  • 4Konno A,Kitagawa T,Kida H,et al.Current Applied Physics[J].2005,5:149.
  • 5Sirimanne P M,Tributsch H.Materials Chemistry and Physics[J].2006,99:5.
  • 6Murugesan S,Bergman B.Electrochimica Acta[J].2007,52:8064.
  • 7Kantam M,Roy M,Roy S,et al.Catalysis Communications[J].2008,9:2226.
  • 8Kalita P K,Phukan P.Tetrahedron Letters[J].2008,49:5495.
  • 9Kalita H R,Borah A J,Phukan P.Tetrahedron Letters[J].2007,48:5047.
  • 10Zhang L P,Guo F,Liu X Z.Materials Research Bulletin[J].2006,41:905.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部