期刊文献+

基于改进核聚类算法的空间目标识别方法 被引量:6

Space Target Recognition Based on Improved Kernel FCM
下载PDF
导出
摘要 根据目标区域的矩特征,几何特征以及灰度特征,提取出目标的特征向量,并通过聚类算法对空间目标进行识别,提出了一种基于Voronoi距离的核聚类算法(KFCM)。该算法通过引入一种新的距离度量,使得隶属度函数更加的明晰,改善了核聚类算法极易陷入最小值的问题。运用改进的核聚类算法对3类空间目标进行识别,试验结果验证了算法的正确性和有效性。 A recognition system was presented to accomplish space target classification. Firstly, Image feature vectors were extracted according to invariant region moments, shape and image descriptors of space objects. And then, clustering algorithm is applied to the classify space target. An improved kernel clustering algorithm based on Voronoi distance was proposed which had a crisper membership function and was robust for noise and outliers. Experiments show that the improved kernel fuzzy clustering algorithm is more accurate and valid than that of the conventional methods.
出处 《中国空间科学技术》 EI CSCD 北大核心 2012年第2期35-42,共8页 Chinese Space Science and Technology
基金 国家863高科技计划(2009AA7043005 2010AA7043005)资助项目
关键词 图像识别 核聚类法 特征提取 空间目标 Image recognition Kernel cluster method Feature extraction Space target
  • 相关文献

参考文献14

  • 1MURASE HIROSHI,NAYAR SHREE K.Visual learning and recognition of 3D objects from appearance[J].International Journal of Computer Vision,1995,14(1):5-24.
  • 2SCHIELE BERNT,CROWLEY JAMES L.Recognition without correspondence using multidimensionalreceptive field histograms[J].International Journal of Computer Vision,2000,36(1):31-50.
  • 3DEMPSTER A P,LAIRD N M,RUBIN D B.Maximum likelihood from incomplete data via EM algorithm[J].Journal of the Royal Statistical Society.Series B(Methodological),1977,39(1):1-38.
  • 4CORTES CORINNA,VAPNIK V.Support vector networks[J].Machine Learning,1995,20(3):273-297.
  • 5BEZDEK JAMES C,EHRLICH ROBERT,FULL WILLIAM.FCM:The fuzzy c-means clustering algorithm[J].Computers and Geosciences,1984,10(5):191-203.
  • 6CHEN SONGCAN,ZHANG DAOQIANG.Robust image segmentation using FCM with spatial constraintsbased on new kernel-induced distance measure[J].IEEE Transactions on Systems,Man,and Cybernetics,Part B:Cybernetics,2004,34(4):1907-1916.
  • 7GONZALEZ R C,WOODS R E.Digital image processing[M].2nd ed.Upper Saddle River,NewJersey:Prentice-Hall,2002.
  • 8林玉池,崔彦平,黄银国.复杂背景下边缘提取与目标识别方法研究[J].光学精密工程,2006,14(3):509-514. 被引量:88
  • 9王琪,万中南,韩俊伟.基于图像中心矩和特征向量的目标识别方法[J].激光与红外,2009,39(8):895-898. 被引量:8
  • 10王江安,朱向前,宗思光,肖伟岸.红外目标特征分析及融合特征提取[J].传感技术学报,2005,18(2):289-291. 被引量:8

二级参考文献21

共引文献122

同被引文献51

引证文献6

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部