期刊文献+

卫星接收系统抗干扰的卷积盲分离算法 被引量:2

Convolutive Blind Separation Algorithm Based on Satellite Communication Anti-jamming
下载PDF
导出
摘要 提出一种新的卷积混合盲分离算法,并把该算法应用到卫星通信抗干扰中,将通信信号和干扰信号分离开,以实现抗干扰的目的。该算法使用基于初等反射矩阵的高阶累积量联合对角化法来分离卷积混合的卫星通信信号和干扰信号。计算机仿真表明,在噪声环境下,信噪比大于10dB时该算法有较好的分离效果,信噪比小于10dB时分离性能有所下降,但基本也能实现分离,且与其他文献中方法相比具有计算复杂度低、分离性能好的特点,因此更适宜用于卫星通信抗干扰。 Aiming at the problem separation in noisy environment, a new of satellite communication signal and jamming blind algorithm for convolutive mixture blind source separation (BSS) by exploiting the householder transformation to realize the joint diagonalization of high-order cumulant and operation in the frequency domain was proposed. Compared with the classical methods, simulation results show that the proposed algorithm has lower computational complexity and better separation performance. When signal to noise ratio (SNR) is greater than lOdB, the novel algorithm of anti-jamming can realize the separation of communication signals and the jamming, and has good separation performance.
作者 温媛媛 陈豪
出处 《中国空间科学技术》 EI CSCD 北大核心 2012年第2期48-54,共7页 Chinese Space Science and Technology
关键词 盲分离 卷积混合 初等反射矩阵 信噪比 噪声干扰 卫星通信 Blind source separation Convolutive mixture Householder transformation Signal to noise ratio Noise jamming Satellite communication
  • 相关文献

参考文献1

二级参考文献14

  • 1Yi Zhou, Boling Xu. "Blind source separation in frequency domain" [ J ]. Elsevier, Signal Processing 83 ( 2003 ) : 2037- 2046.
  • 2Shoko Araki, Ryo Mukai, et al. "The fundamental limitation of frequency domain blind source separation for convolutive mixtures of speech" [ J]. IEEE Trans. on speech and audio processing, vol. 11, no. 2, Mar. 2003 : 109-116.
  • 3Qingfeng Pan, Tyseer Aboulnasr. "A New Perceptual convolutive blind source separation algorithm for speech separation" [J]. ICSP '04 Proceedings. 2004 7th International Conference on Vol. 1,31 Aug.-4 Sept. 2004:323-326,
  • 4Qingfeng Pan, Tyseer Aboulnasr. "A Post-filter Perceptual convolutive blind source separation algorithm for speech separation" [J]. ICSP '04 Proceedings,2004 7th International Conference on Vol. 1,31 Aug.-4 Sept. 2004:327-330.
  • 5Shoji Makino, Hiroshi Sawada, Ryo Mukai and Shoko Araki. " Blind source separation of convolutive mixtures of speech in frequency domain" [J]. IEICE Trans. Fundamentals, vol. E88-A, no. 7, July 2005: 1640-1655.
  • 6Hiroshi Sawada, Ryo Mukai, Shoko Araki, and Shoji Makino. "A Robust and Precise Method for Solving the Permutation Problem of Frequeney-Domaln Blind Source Separation"[J]. IEEE Trans. on speech and audio processing, vol. 12 ,no. 5 ,Sept. 2004:530-538.
  • 7Kamran Rahbar and James P. Reilly. "A Frequency Domain Method for Blind Source Separation of Convolutive Audio Mixtures" [ J ]. IEEE Trans. on speech and audio processing,vol. 13 ,no. 5 ,Sept. 2005:832-844.
  • 8S. Amari, A. Cichocki. "Adaptive blind signal processingneural network approaches" [J]. Proc. IEEE 86 (10) (1998) :2026-2048.
  • 9Henrik Sahlin, Holger Broman. "Separation of real-world signals" [ J ]. Elsevier, Signal Processing 64 ( 1998 ) : 103- 113.
  • 10Tiemin Mei, Ftdiang Yin. "Blind separation of convolutive mixtures by decorrelation" [ J ]. Elsevier, Signal Processing 84 (2004) : 2297 -2313.

共引文献2

同被引文献9

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部