期刊文献+

基于支持向量机的室颤信号检测算法

Ventricular Fibrillation Detection Algorithm Based on Support Vector Machine
原文传递
导出
摘要 目的:实现室颤信号与非室颤信号的分类,进而实现室颤信号的检测。方法:本文引入了一种基于支持向量机(Support Vec-tor Machine,SVM)和改进的越限区间算法(TCI)的新算法,其中支持向量机在处理分类和模式识别等问题中具有很大的优势。该算法采用4s的滑动窗技术,并利用改进后的越限区间算法(Threshold Crossing Interval,TCI)方法提取心电信号的特征。新算法的实现如下:在每一滑动窗内采用改进的后的绝对值阈值,计算中间2s内的平均越限间隔值。并以此TCI值作为特征参数,输入一个预先设计好的二分类支持向量机中,从而实现分类。结果:成功实现了室颤信号的检测,通过计算该方法的灵敏度、精确度、预测性和准确度且与其他方法相比较,可知此新算法总体可靠性优于其他方法。结论:该算法能够实现室颤信号的实时监测,且简单易行,易于实现,较适合实时的心电监测以及除颤仪器。 Objective:To realize the discrimination of ventricular fibrillation(VF) and non-ventricular fibrillation(non-VF),accordingly detection of VF.Methods: The new algorithm was based on support vector machine(SVM) and the improved(TCI) algorithm.The SWM has great advantages in processing classification and pattern recognition.The new algorithm utilized 4-s-sliding-window technology and the improved TCI to extract features of ECG.It was implemented as follows: by using absolute thresholds,calculated average threshold crossing intervals of the middle 2s segment in every sliding window,and then input the TCI values into a binary classification support vector machine,finally,the discrimination was realized.Results: VF and non-VF were classified successfully.It shows that the new algorithm was superior to other classical algorithms by calculating quality parameters.Conclusions: This new algorithm can be used for real time VF detection.It is easier to implement and has greater advantages in real-time execution.It is suitable for ECG monitoring and defibrillator.
出处 《现代生物医学进展》 CAS 2012年第9期1751-1754,1768,共5页 Progress in Modern Biomedicine
基金 山东省自然科学基金(ZR2010HM020) 济南市科技发展计划项目(201102005)
关键词 室性纤颤(VF) TCI 支持向量机(SVM) Ventricular Fibrillation; TCI; Support Vector Machine;
  • 相关文献

参考文献4

二级参考文献19

  • 1李盼池,许少华.支持向量机在模式识别中的核函数特性分析[J].计算机工程与设计,2005,26(2):302-304. 被引量:98
  • 2[1]Scholkopf B, Burges C, Vapnik V. Extracting Support Data for a GivenTask[C]. Proc. of Ftrst Int. Conf. Knowledge Discovery &Data Mining, CA:.AAAl, 1995: 237~243.
  • 3[2]Vapnik V. The Nature of Statistical Learning Theory[M]. New Yor k:Sringer- Verlag, 1995.
  • 4[3]Burges C J C. ATtrorial on Suppot Vector Machines for Pattem Recognition[J]. Data Mining and Knowledge Discovery, 1998, 2(2):1~47.
  • 5[4]Smola A, Scholkopf B. On a Kernel - Based Method for Pattern Recognition, Regression, Approximation and Operator Inversion[ EB]. http://swm. first.gmd. de, 1998.
  • 6[5]Scholkopf B. Comparing Supprt Vectcr MachineswithGaussianKemels to Radial Basis Function Classifiers[J]. IEEE Trans. onn Signal Procesing, 1997,45(11): 2758~2765.
  • 7[6]Scholkopf B, Smola A, Muller K - R. Nonlinear Component Analysis as a Kernel Eigenvalue Problem[M]. Neural Compuaation, 1998, 10: 1299~ 1319.
  • 8VladimirNVapnik.统计学习理论的本质[M].北京:清华大学出版社,2000.96-107.
  • 9史忠植.知识发现[M].北京:清华大学出版社,2001..
  • 10LUNTS A,BRAILOVSKIY V.Evaluation of attributes obtained in Statistical Decision Rules[J].Engineering Cybemetics,1967(3):98-109.

共引文献676

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部