期刊文献+

修正的SQP型并行变量分配算法

A Modified SQP Parallel Variable Distribution Algorithm
下载PDF
导出
摘要 Ferris和Mangasarian提出求解最优化问题的PVD(并行变量分配)算法,此算法是把变量分为主要变量和辅助变量,分配到p个处理机上,每个处理机除了负责更新本处理机的主要变量外,同时还沿着给定的方向更新辅助变量,使算法的鲁棒性和灵活性得到了很大的提高.该文基于文献[6]提出一种修正的SQP型PVD算法,构造其搜索方向是下降方向和可行方向的组合,并对此方向给予一个高阶修正,使此算法很好地防止Maratos效应发生,而且能够克服在求解子问题时出现约束不相容的情况.在合适的条件下,推导出此算法具有全局收敛性. Ferris and Mangasarian proposed a PVD(parallel variable distribution) algorithm for solving optimization problems, which divides variables into primary and secondary variables groups. According to the algorithm, the variables are distributed among p parallel processors with each processor having the responsibility for updating its primary variables while allowing the remaining "secondary" variables to change in a restricted fashion along some easily com- putable directions, which enhances robustness and flexibility of the algorithm. In this paper, we present a modified SQP type PVD algorithm based on [6], whose search direction is a suitable combination of a descent direction and a feasible direction, and give a second-order revised for such a direction. This new algorithm is very effective in preventing Maratos effect from hap- pening, and avoid constraints in subproblem are inconsistent. We show the global convergence under some suitable conditions.
出处 《数学物理学报(A辑)》 CSCD 北大核心 2012年第2期336-343,共8页 Acta Mathematica Scientia
基金 国家自然科学基金(11101420,10971122) 高等学校博士点基金(20093718110005) 山东省科技攻关(2009GG10001012) 山东省自然科学基金(Y2008A01)资助
关键词 非线性规划 序列二次规划 PVD算法. Nonlinear programming Sequential quadratic programming PVD algorithm.
  • 相关文献

参考文献10

  • 1Ferris M C, Mangasarian O L. Parallel variable distribution. SIAM Journal on Optimization, 1994, 1(1): 487-500.
  • 2Bertsekas D P, Tsitsiklis J N. Parallel and Distributed Computation. New Jersey: Prentice Hall, Englewood Cliffs, 1989.
  • 3Tseng P. Dual coordinate ascent methods for non-strictly convex minimization. Mathematical Program- ming, 1993, 59(2): 231-247.
  • 4Solodov M V. New inexact parallel variable distribution algorithms. Computational Optimization and Applications, 1997, 7(2): 165-182.
  • 5Solodov M V. On the convergence of constrained parallel variable distribution algorithms. SIAM Journal on Optimization, 1998, 8(1): 187 196.
  • 6Sagastizabal C A, Solodov M V. Parallel variable distribution for constrained optimization. Computational Optimization and Applications, 2002, 22(1): 111-131.
  • 7Zhu Z B. A simple feasible SQP algorithm for inequality constrained optimization. Applied Mathematics and Computation, 2006, 182(2): 987-998.
  • 8Han C Y, Wang Y L, He G P. On the convergence of asynchronous parallel algorithm for large-scale linearly constrained minimization problem. Applied Mathematics and Computation, 2009, 211(2): 434-441.
  • 9Fukushima M. Parallel variable transformation in unconstrained optimization. SIAM Journal on Opti- mization, 1998, 8(3): 658-672.
  • 10Fang L, He G P, Wang Y L. A new non-interior-point continuation method for nonlinear complementarity problem with P0-function. Acta Mathematica Scientia, 2011, 31A(1): 229-238.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部