期刊文献+

拓扑空间上不动点和具有上下界的变分不等式 被引量:1

Fixed Points and Variational Inequalities with Lower and Upper Bounds in Topological Spaces
下载PDF
导出
摘要 根据广义凸空间上的KKM型定理和Fan-Browder型不动点定理,得到了没有凸和线性结构且没有紧致框架的拓扑空间上的Φ-映射和弱Φ-映射的若干个新的不动点定理.作为应用,在非紧致的拓扑空间上讨论了具有上下界的变分不等式解的存在性问题. Based on an KKM type theorem and a Fan-Browder type fixed point theorem on generalized convex space, some new fixed point theorems for a φ-map and a weak φ-map defined on topological spaces without any convex and linear structure and any compact setting are obtained. As applications, some existence problems of solutions for variational inequalities with lower and upper bounds were discussed in non-compact topological spaces.
作者 朴勇杰
出处 《数学物理学报(A辑)》 CSCD 北大核心 2012年第2期364-372,共9页 Acta Mathematica Scientia
基金 吉林省教育厅科研项目(吉教科合字[2011]第434号)资助
关键词 广义凸空间 KKM映射 ω-连通 φ-映射 弱φ-映射 变分不等式. Generalized convex space KKM map ω-connected φ-map Weak φ-map Vari- ational inequality.
  • 相关文献

参考文献1

二级参考文献9

  • 1Blum E, Oettli W. From optimization and variational inequalities to equilibriun problems. Math Students,1994, 63:123-145
  • 2Oettli W, Schlager D. Existence of equilibria for g-monotone mappings. In: Nonlinear Analysis and Convex Analysis. Singapore: World Scientific, 1999. 26-33
  • 3Bianchi M, Schaible S. Generalized monotone bifunctions and equilibrium problems. J Optim Theory Appl, 1996, 90(1): 31-43
  • 4Ding X P, Park J Y, Jung I H. Existence of solutions for nonlinear inequalities in G-convex spaces. Appl Math Lett, 2002, 15: 735-741
  • 5Isac G, Sehgal V M, Singh S P. An alternate version of a variational inequality. Indian J Math, 1999,41(1): 25-31
  • 6Li J. A lower and upper bounds of a variational inequality. Appl Math Lett, 2000, 13(5): 47-51
  • 7Chadli O, Chiang Y, Yao J C. Equilibrium problems with lower and upper bounds. Appl Math Lett, 2002,15:327-331
  • 8Ding X P. New H - KKM theorems and their applications to geometric property, coincidence theorems,minimax inequality and maximal elements. Indian J Pure Appl Math, 1995, 26(1): 1-19
  • 9Ding X P, Park J Y, Jung I H. Fixed point theorems on product topological spaces and applications.Positivity, 2004, 8:315-326

共引文献4

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部