期刊文献+

结构向量自回归模型因果图的信息论辨识方法 被引量:1

Identification Structural Vector Autoregressive Causal Graphical Models by Information Theory Criteria
下载PDF
导出
摘要 由观测数据确定变量间的因果关系是时间序列分析的重要内容.本文利用图模型方法研究结构向量自回归模型变量间的因果关系,通过时间序列因果图的建立将问题转化为时间序列因果图结构的辨识.基于信息论方法提出了因果性定向的三步准则,利用关联积分估计互信息和条件互信息.模拟结果显示本方法能更有效地辨识结构向量自回归模型因果图的因果结构. Detecting the causal relationships among variables is an important content of time series analysis.In this paper,the causal relationships among variables of structural vector autoregressive model are studied using graphical models,time series causal graph is presented and the structural identification problem of the causal graph is investigated.A three-step procedure is developed to orient the causal direction based on the information theory criteria.The mutual informations and the conditional mutual informations are estimated by the correlation integral.Numerical results demonstrate that the proposed method is able to identify the causal structure of causal graph of structural vector autoregressive model very effectively.
出处 《工程数学学报》 CSCD 北大核心 2012年第2期197-204,共8页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(60375003 10926197)~~
关键词 多维时间序列 因果图 条件互信息 PC算法 ITM算法 multivariate time series causal graph conditional mutual information PC algorithm ITM algorithm
  • 相关文献

参考文献11

  • 1Dahlhaus R. Graphical interaction models for multivariate time series[J]. Metrika, 2000, 51(2): 157-172.
  • 2Eichler M. Granger causality and path diagrams for multivariate time series[J]. Journal of Econometrics, 2007, 137(2): 334-353.
  • 3Wei GAO,Zheng TIAN.LEARNING GRANGER CAUSALITY GRAPHS FOR MULTIVARIATE NONLINEAR TIME SERIES[J].Journal of Systems Science and Systems Engineering,2009,18(1):38-52. 被引量:3
  • 4Oxley L, Reale M, Wilson G. Constructing structural VAR models with conditional independence graphs[J]. Mathematics and Computers in Simulation, 2009, 79(9): 2910-2916.
  • 5Spirtes P, Glymour C, Scheines R. Causation, Prediction and Search[M]. New York: Springr-Verlag, 2001.
  • 6Pearl J. Causality: Models, Reasoning and Inference[M]. Cambridge: Cambridge University Press, 2000.
  • 7Moneta A. Graphical causal models and VARs: an empirical assessment of the real business cycles hypoth- esis[J]. Empirical Economics, 2008, 35(2): 275-300.
  • 8Goria M, et al. A new class of random vector entropy estimators and its applications in testing statistical hypotheses[J]. Journal of Nonparametric Statistics, 2005, 17(3): 277-298.
  • 9Hall P, Morton S C. On the estimation of entropy[J]. Annals of the Institute of Statistical Mathematics, 2003, 45(1): 69-88.
  • 10Marschinski R, Kantz H. Analysing the information flow between financial time series an improved esti- mator for transfer entropy[J]. European Physical Journal B, 2002, 30(2): 275-281.

二级参考文献12

  • 1Maciej Kamiński,Mingzhou Ding,Wilson A. Truccolo,Steven L. Bressler.Evaluating causal relations in neural systems: Granger causality, directed transfer function and statistical assessment of significance[J].Biological Cybernetics.2001(2)
  • 2Rainer Dahlhaus.Graphical interaction models for multivariate time series1[J].Metrika.2000(2)
  • 3Chavez,M,Martinerie,J,Quyen,M.L.V.Statistical assessment of nonlinear causality:application to epileptic EEG signals[].Journal de Neuroradiologie.2003
  • 4Diks,C,DeGoede,J.A general nonparametric bootstrap test for Granger causality[].Global Analysis of Dynamical Systems.2001
  • 5Eichler,M.Graphical modelling of multivariate time series[].Probability Theory and Related Fields.2001
  • 6Gao,W,Tian,Z.Detecting lags in nonlinear models using general mutual information[].Journal of Mathematical.2008
  • 7Marinazzo,D,Pellicoro,M,Stramaglia, S.Kernel method for nonlinear Granger causality[].Physics Letters.2008
  • 8Marinazzo,D,Pellicoro,M,Stramaglia, S.Kernel Granger causality and the analysis of dynamical networks[].Physical Review.2008
  • 9Rapp,P,Celucci,C.J,Watanabe,T.A,Albano,A.M,Xchmah,T.I.Surrogate data pathologies and the falsepositive rejection of the null hypothesis[].International Journal of Bifurcation and Chaos.2001
  • 10Granger C W J.Investigating Causal Relations by Economic Models and Cross Spectral Methods[].Econometrica.1969

共引文献2

同被引文献9

  • 1DAHLHAUS R,EICHLER M.Causality and graphical models in time series analysis[C]∥Highly structured stochastic sys-tems.Oxford:Oxford University Press,2003:115-137.
  • 2OXLEY L,REALE M,WILSON G T.Constructing structural VAR models with conditional independence graphs[J].Math-ematics and Computers in Simulation,2009,79:2910-2916.
  • 3EICHLER M.Graphical modelling of multivariate time series[J].Probability Theory and Related Fields,2012,153(2):233-268.
  • 4HYVARINEN A,ZHANG K,SHIMIZU S.Estimation of a structural vector autoregression model using non-Gaussianity[J].Journal of Machine Learning Research,2010,11:1709-1731.
  • 5PEARL J.Causality:models,reasoning and inference[M].Cambridge:Cambridge University Press,2000.
  • 6SPIRTES P,GLYMOUR C,SCHEINES R.Causation,prediction and search[M].New York:Springr-Verlag,2001.
  • 7HOOVER K.Automatic inference of the contemporaneous causal order of a system of equations[J].Econometric Theory,2005,21:69-77.
  • 8MONETA A.Graphical causal models and VARs:an empirical assessment of the real business cycles hypothesis[J].Em-pir Econ,2008,35:275-300.
  • 9FRAUMENI J.Cigarette smoking and cancer of the urinary track:Geographic variations in the United States[J].J of theNational Cancer Institut,1970,41:1205-1211.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部