期刊文献+

第二类对称典型域上的经典力学

Classical Mechanics on the Classical Domain of Type Two
下载PDF
导出
摘要 四类对称典型域均可以表示成形如G/K(G是经典李群,K是G的极大紧子群)的齐性空间.本文通过构造适当的辛形式,得到了第二类对称典型域上经典力学的运动方程,并具体给出了两例刘维尔完全可积哈密顿系统.本文的方法可以类似地用来讨论第三类和第四类对称典型域上的经典力学. Each classical bounded symmetric domain is diffeomorphic to a homogeneous space G/K(G is a classical Lie group and K is a maximal compact subgroup of G).By constructing a suitable symplectic form,we study the classical mechanics and obtain the equation of motion on the classical domain of type two in this paper.Moreover,we present two examples of Liouville completely integrable Hamiltonian systems.Similarly,our methods can be used to evaluate the classical mechanics on the classical domains of type three and type four.
作者 丁浩
出处 《工程数学学报》 CSCD 北大核心 2012年第2期253-261,共9页 Chinese Journal of Engineering Mathematics
基金 西南交通大学青年教师起步项目(2009Q061)~~
关键词 经典力学 对称典型域 辛形式 classical mechanics classical bounded symmetric domain symplectic form
  • 相关文献

参考文献1

二级参考文献8

  • 1Boole, G.: Calculus of Finite Differences, J. F. Moulton, ed., fourth edition, Chelsea Publishing Company, New York, 1970.
  • 2McDuff, D., Salamon, D.: Introduction to Symplectic Topology, second edition, Oxford University Press, Oxford, 1998.
  • 3Polterovich, L.: The Geometry of the Group of Symplectic Diffeomorphisms, Lectures in Mathematics, ETH, Birkhauser, Basel, 2001.
  • 4Duistermaat, J. J., Heckman, G. J.: On the variation in the cohomology of the symplectic form of the reduced phase space, Inventiones Mathematicae, 69, 259-268 (1982), Addendum in loc. cit., 72, 153-158 (1983).
  • 5Lu, G. C.: Gromov-Witten invariants and pseudo symplectic capacities. Israel Journal of Mathematics, 156, 1-63 (2006).
  • 6Lu, Q. K.: The heat kernels of noncompact symmetric spaces, Analysis and Geometry on Complex Homogeneous Domains, Progress in Mathematics, 185, Birkhauser, Basel, 2000.
  • 7Konechny, A., Rajeev, S. G., Turgut, O. T.: Classical Mechanics on Crassmannian and Disc. In: Geometry, Integrablity and Quantization II, Ivailo M. Mladenov and Gregory L. Naber, Eds., Coral Press, Sofia, 2001.
  • 8Lu, Q. K.: Classical Manifolds and Classical Domains, Shanghai Scientific and Technical Publishers, Shanghai, 1963, pp. 349-369 (in Chinese).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部