期刊文献+

Analysis of Bifurcation and Stability on Solutions of a Lotka-Volterra Ecological System with Cubic Functional Responses and Diffusion 被引量:1

Analysis of Bifurcation and Stability on Solutions of a Lotka-Volterra Ecological System with Cubic Functional Responses and Diffusion
下载PDF
导出
摘要 This paper deals with a Lotka-Volterra ecological competition system with cubic functional responses and diffusion. We consider the stability of semitrivial solutions by using spectrum analysis. Taking the growth rate as a bifurcation parameter and using the bifurcation theory, we discuss the existence and stability of the bifurcating solutions which emanate from the semi-trivial solutions. This paper deals with a Lotka-Volterra ecological competition system with cubic functional responses and diffusion. We consider the stability of semitrivial solutions by using spectrum analysis. Taking the growth rate as a bifurcation parameter and using the bifurcation theory, we discuss the existence and stability of the bifurcating solutions which emanate from the semi-trivial solutions.
出处 《Communications in Mathematical Research》 CSCD 2012年第2期127-136,共10页 数学研究通讯(英文版)
基金 supported partly by the NSF (10971124,11001160) of China NSC (972628-M-110-003-MY3) (Taiwan) the Fundamental Research Funds (GK201002046) for the Central Universities
关键词 Lotka-Volterra ecological system STABILITY bifurcating solution Lotka-Volterra ecological system, stability, bifurcating solution
  • 相关文献

参考文献22

  • 1Leung A. Equilibria and stabilities for competing-species, reaction-diffusion equations with Dirichlet boundary data. J. Math. Anal. Appl., 1980, 73: 204-218.
  • 2Cosner R C, Lazer A C. Stable coexistence state in the Volterra~Lotka competition model with diffusion. SIAM J. Appl. Math., 1984, 44: 1112-1132.
  • 3Li L, Logan R. Positive solutions to general elliptic competition models, Differential Integral Equations, 1991, 4: 817-834.
  • 4Wang L, Li K. On positive solutions of the Lotka-Volterra cooperating models with diffusion. Nonlinear Anal., 2003, 53: 1115-1125.
  • 5Roeger L-I W. A nonstandard discretization method for Lotk,u-Volterra models that preserves periodic solutions. J. Differential Equations Appl., 2005, 11: 721-733.
  • 6Jia Y, Wu J, Nie H. The coexistence states of a predator-prey model with nonmonotonic functional response and diffusion. Acta Appl. Math., 2009, 108: 413-428.
  • 7Blat J, Brown K J. Global bifurcation of positive solutions in some systems of elliptic equations. SIAM J. Math. Anal., 1986, 17: 1339-1352.
  • 8Aisharawi Z, Rhouma M. Coexistence and extinction in a competitive exclusion Leslie-Gower model with harvesting and stocking. J. Differential Equations Appl., 2009, 15: 1031-1053.
  • 9Haque M, Venturino E. Effect of parasitic infection in the Leslie-Gower predator-prey model. J. Biol. Systems, 2008, 16: 425-444.
  • 10Korobeinikov A. A Lyapunov function for Leslie-Gower prey-predator models. Appl. Math. Lett., 2001, 14: 697-699.

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部