期刊文献+

自由基HO_2与C_2H_2反应势能面的理论研究

Theoretical study on the potential energy surface of the HO_2 and C_2H_2 reaction
原文传递
导出
摘要 应用量子化学从头计算和密度泛函理论(DFT)对HO2+C2H2反应体系的反应机理进行了研究.在B3LYP/6-311G**和CCSD(T)/6-311G**水平上计算了HO2+C2H2反应的二重态反应势能面.计算结果表明,主要反应方式为自由基HO2的H原子和C2H2分子中的C原子结合,经过一系列异构化,最后分解得到主要产物P1(CH2O+HCO).此反应是放热反应,化学反应热为-321.99kJ.mol-1.次要产物为P2(CO2+CH3),也是放热反应. The reaction mechanism of C2H2 with HO2 was investigated by ab initio and density functional theory(DFT).The doublet potential energy surface of the C2H2 and HO2 reaction was calculated at the B3LYP/6-311G* * and CCSD(T)/6-311G* * level.The results of the calculation showed that the major reaction mode was H-atom of HO2 combination with C-atom of C2H2 to form the composite.Then thecomposite was subjected to isomerization process and decomposed to the main product P1(CH2O+HCO).The reaction process released large heat and the reaction heat was-321.99 kJ·mol-1.The secondary reaction was also exothermic reaction and produced the secondary product P2(CO2+CH3).
出处 《分子科学学报》 CAS CSCD 北大核心 2012年第2期134-141,共8页 Journal of Molecular Science
基金 国家自然科学基金资助项目(20643004)
关键词 密度泛函理论 HO2+C2H2 势能面 反应机理 DFT; HO2 and C2H2 molecule; potential energy surface; reaction mechanism
  • 相关文献

参考文献17

  • 1HIDAKA Y, HATTORI K, OKUNO T, et al.[J]. Combust Flame, 1996,107 : 401-417.
  • 2LASKIN A,WANG H. [J]. Chem Phys Left, 1999,303 : 43-49.
  • 3ALZUETA M U,BORRUEY M,CALLEJAS A,et al. [J]. Combust Flame,2008,152:377- 386.
  • 4CHEN CJ,WBOZZELLIJ. [J].J Phys Chem A,1999,103:9731-9769.
  • 5JUNGKAMP T P W, SMITH J N. SEINFELD J H. [J]. J Phys (3hem, 1997,101: 4392 -4401.
  • 6白洪涛,黄旭日,魏志钢,李吉来,孙家钟.HO_2自由基与NO_2反应通道的理论研究[J].化学学报,2005,63(3):196-202. 被引量:6
  • 7刘艳芝,袁焜,吕玲玲,李志锋,朱元成.乙炔与H2O分子之间的氢键结构与性质[J].分子科学学报,2011,27(1):39-43. 被引量:4
  • 8LIOYD A C. [J]. Int J Chem Kinet,1974(6) :169-228.
  • 9ROTZOLL G G,[J]. Combust Sci Technol, 1986,47:275- 298.
  • 10HUNTER T B, WANG H, LITZINGER T A, et al. [J]. Combust Flame, 1994,97 : 201-224.

二级参考文献24

  • 1杜林,徐永福,葛茂发,贾龙,王庚辰,王殿勋.大气条件下O_3与乙炔反应速率常数的测定[J].化学学报,2006,64(21):2133-2137. 被引量:4
  • 2Bardwell, M W; Bacak, A; Raventos, M T; Percival, C J; Sanchez-Reyna, G; Shallcross, D E . Phys Chem Chem Phys 2003, 5, 2381.
  • 3Roehl, C M; Mazely, T L; Friedl, R R; Li, Y; Francisso, J S; Sander, S E .J Phys Chem 2001, 105, 1592.
  • 4AIoisio, S; Francisco, J S. J Phys Chem 2000, 104, 6212.
  • 5Staikova, M; Donaldson, D .J Phys Chem Chem Phys 2001, 3, 1999.
  • 6Jitariu, L C; Hirst, D M. J Phys Chem A 1999, 103,6673.
  • 7Staikova, M; Donaldson, D J. J Phys Chem A 2002, 106,3023.
  • 8Eberhard, P; Meier, R; Krankowsky, D; Hodges, R R. Astron Astrophys 1994, 288, 315.
  • 9Wei, Z-G; Huang, X-R; Sun, Y-B; Liu, J-Y; Sun, J-Z. J Mol Struct (Theochem) 2004, 671, 133.
  • 10Chen, C-J, Bozzelli, J W .J Phys Chem A 1999, 103,9731.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部