期刊文献+

Banach空间中n阶非线性脉冲积分-微分方程的边值问题

Boundary Value Problem on the Nth-order Nonlinear Impulsive Integro-differential Equations in Banach Spaces
下载PDF
导出
摘要 利用非紧性测度和Mnch不动点定理得到了一类高阶非线性脉冲积分-微分方程无穷边值问题解的存在性.首先是将其转化成与之等价的积分方程,进而转化为算子不动点问题,然后通过更为精确的非紧性测度的分析,利用Mnch不动点定理证明了方程解的存在性. In this paper, by means of transforming the integro-differential equations into a inte gral equation, using the measure of noncompactness and Monch fixed point theorem , the ex istence of a solution for a boundary value problem on the nth-order nonlinear impulsive inte gro-differential equations on unbounded domains in a Banach space is obtained.
出处 《陕西科技大学学报(自然科学版)》 2012年第2期100-104,109,共6页 Journal of Shaanxi University of Science & Technology
基金 国家自然科学基金(10901145) 山西省自然科学基金(2010011002-1) 山西省青年科学基金(2010021001-2)
关键词 BANACH空间 脉冲积分-微分方程 边值问题 非紧性测度 Mnch不动点定理 Banach space impulsive integro-differential equation boundary value problem measure of noncompactness^fixed point theorem
  • 相关文献

参考文献7

  • 1D. Guo. Multiple positive solutions for first order nonlinear integro differential equations in Banach spaces[J]. Nonlinear Anal. , 2003,53:183-195.
  • 2D. Guo. Multiple positive solutions for first order nonlinear impulsive integro-differential equations in a Banach space[J]. AppL Math. Comput. ,2003,143:233 -249.
  • 3D. Guo. Multiple positive solutions of a boundary value problem for nth-order impulsive integro-differential equations in a Banach space[J]. Nonlinear Anal. ,2004,56:985- 1 006.
  • 4张兴秋.Banach空间中一阶脉冲微分方程的无穷边值[J].应用数学,2005,18(1):153-160. 被引量:10
  • 5郭大钧.非线性泛函分析[M].山东.山东科学技术出版社,2004:289-306.
  • 6D. Guo. Existence of solutions for nth order impulsive integro-differential equations in a Banach space[J]. Nonlinea Anal. ,2001, 47:741-752.
  • 7D. Ouo, V. Lakshmikantbam, X. Z. Liu. Nonlinear Integral Equations in Abstract Spaces[M]. Kluwer Academic Publishers. Dordrecht, 1996.

二级参考文献6

  • 1Guo Dajun,Lakshmikantham V. Nonlinear problems in abstract cones[M]. San Diego: Academic Press,Inc. , 1988.
  • 2Guo Dajun. Boundary value problems for impulsive imegro-differential equation on unbounded domains in a Banach space[J].Applied Mathematics and Computation. 1999,99 : 1 - 15.
  • 3Guo Dajun. Second order in-egro-differential equation of Volterra type on unbouned domains in Banachspaces[J]. Nonlinear Anal. , 2000,41 : 465 -476.
  • 4Guo Dajun. Mukiple solutions for firs- order nonlinear imegro-differenial equation in Banach spaces[J].Nonlinear Anal. , 2003,53 : 183 - 195.
  • 5Liu Yansheng. Boundary value problems for second order differential equation on unbounded domains in a Banach space[J]. Applied Mathematics and Computation. 2003.135 : 569-583.
  • 6Liu Lishan.Iterative method for solutions and coupled quasi-solutions of nonlinear fredholm integral equations in ordered Banach spaces[J]. Indian J. Pure Appl. Math. , 1996,27(10): 959 - 972.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部