期刊文献+

广义特征值问题求解的改进Ritz向量法 被引量:3

Improved Ritz vector method for generalized eigenvalue problems
下载PDF
导出
摘要 从提高算法的稳定性和计算效率入手,采取迭代及防止漏根、多根的措施,对传统的Ritz向量法进行改进,提出改进的Ritz向量法。此算法仅需生成r维的Krylov空间,大大降低投影矩阵阶数,减少投影矩阵特征值计算时间。引入重正交方案和模态比较法,并给出Ritz向量块宽q与生成步数r的建议取值。最后通过四参数的谱变换法,不但提高了该算法的稳定性和计算效率,也拓宽了Ritz向量法的适用范围。并用算例证明该算法的优越性。 To improve stability and efficiency, the improved Ritz vector method was presented, iteration and some effective measures avoiding root leakage or extra roots were adopted. The traditional Ritz vector method was improved. This new method only needed r-dimensional Krylov space to be constituted, greatly reduced the order number of projection matrix, decreased the eigenvalue computing time of projection matrix. Repeated orthogonality scheme and mode compare method were introduced. The values of block width q and iteration step r for Ritz vector were suggested. At last, with a four-parameter spectral transformation method, the computation efficiency and stability were greatly increased. At the same time, the applicable range of Ritz vector method was broadened. The numerical examples were given to demonstrate the validity and efficiency of the proposed method.
作者 李秀梅 吴锋
出处 《振动与冲击》 EI CSCD 北大核心 2012年第7期19-23,共5页 Journal of Vibration and Shock
基金 广西科学研究与技术开发计划项目(桂科攻0861001-12) 广西大学科研基金项目(20090031)
关键词 广义特征值 Ritz向量法 重正交方案 模态比较法 投影矩阵 谱变换法 generalized eigenvalue Ritz vector method repeated orthogonality scheme mode compare method projection matrix spectral transformation method
  • 相关文献

参考文献13

  • 1Willcock J, Lumsdaine A. Accelerating sparse matrix compu- tations via data compression [ J ]. International Conference on Supercomputing, ACM and SIGARCH,2006:307 - 316.
  • 2Paige C C. The computation of eigenvalues and eigenvectors of very large sparse matrices [ D ]. Ph. D thesis, Univ. of London, 1971.
  • 3宫玉才,周洪伟,陈璞,袁明武.快速子空间迭代法、迭代Ritz向量法与迭代Lanczos法的比较[J].振动工程学报,2005,18(2):227-232. 被引量:32
  • 4Golub G H. Some uses of lanczos algorithm in numerical line- ar algabra[ M]. Topics in Numerical Analysis(ed. By Miller J J H) ,1972:173 - 194.
  • 5Underwood R. An iterative block lanczos method for the solu- tion of large sparse symmetric eigenproblems [ D ]. Stanford U- niversity, 1975.
  • 6Wilson E L, Yuan M W, Dickens J M. Dynamic analysis by direct superposition of Ritz vectors [ J ]. Earthquake Eng. Struct. Dyn,1982,10:813-832.
  • 7Yuan M W, Chen P, Xiong S T, et al. The WYD method inlarge eigenvalue problems [ J ]. Eng. Comput, 1989, 6: 49 - 57.
  • 8徐稼轩,郑铁生.结构动力分析中的数值方法[M].西安交通大学出版社,1993:143-163.
  • 9Hoemmen M. Communication-avoiding krylov subspace meth- ods [ D]. Ph. D, University of California, Berkeley, 2010.
  • 10Grimes R G, Lewis J G, Simon H D. A shifted block lanczos algorithm for solving sparse symmetric generalized eigenprob- lems [ J]. SIAM J Matrix Anal. Appl. , 1994, 15:228 - 272.

二级参考文献14

  • 1Golub G H. Some uses of Lanczos algorithm in numerical linear algabra[ M ]. Topics in Numerical Analysis ( ed. by Miller J J H ),1972,173-194.
  • 2Underwood R. An iterative block lanczos method for the solution of large sparse symmetric eigenproblems[ D ]. Stanford University, 1975.
  • 3Press W H, Teukolsky S A, Vetterling W T, et al.Numerical Recipes in Fortran 90: the Art of Parallel Scientific Computing[ M ]. 2nd ed. Cambridge: Cambridge University Press, 1996.
  • 4Duff I S, Grimes R. Lewis J. The user's guide for the Harwell-Boeing sparse matrix collection ( Release Ⅰ )[ R ]. Technical Report TR/PA/92/86, CERFACS.Lyon, France, 1992.
  • 5Nguyen D T, Bunting C F, Moeller K J, et al. Subspace and Lanczos sparse eigen-solvers for finite element structural and electromagnetic applications[ J ]. J Advances in Engineering Software, 2000, 31: 599-606.
  • 6Grimes R G, Lewis J G, Simon H D. A shifted block lanczos algorithm for solving sparse symmetric generalized eigenproblems[ J ]. SIAM J Matrix Anal. Appl. , 1994,15 (1) : 228-272.
  • 7Clint M, Jennings A. The evaluation of eigenvalue and eigenvectors of real symmetric matrices by simultaneous iteration[ J ]. The Computer Journal, 1970, 13(1) : 76-80.
  • 8Bathe K J, Wilson E L. Large eigenvalue problems in dynamic analysis [ J ]. ASCE J. Energ. Meth. Div.,1972,98:1471-1485.
  • 9Wilson E L, Yuan M W, Dickens J M. Dynamic analysis by direct superposition of Ritz vectors[ J ]. Earthquake Eng. Struct. Dyn. ,1982,10:813-832.
  • 10Yuan M W, et al. The WYD method in large eigenvalue problems[ J ]. Eng. Comput., 1989,6:9-57.

共引文献35

同被引文献35

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部