期刊文献+

双侧约束对碰系统Lyapunov指数分析 被引量:4

Analysis of the Lyapunov exponential spectrum in a vibro-impact system with two-sided rigid stops
下载PDF
导出
摘要 利用相对坐标和绝对坐标之间转换的思想,通过构建由流映射和局部映射所组成的Poincare映射,将非光滑连续动力系统转化成离散时间动力系统,计算两自由度双侧约束对碰系统的Lyapunov指数谱。将计算得到的系统Lyapunov指数谱与系统全局分岔图进行比较,证实计算Lyapunov指数谱方法的正确性。 By use of the transformation between relative coordinates and absolute coordinates presented here, Lyapunov exponential spectrum of a two-degree-of-freedom vibro-impact system with two-sided rigid stops was calculated by introducing Poincare mapping composed by flow mapping and local mapping and then changing a continuous-time dynamical system into a discrete-time one. Comparing the diagram of Lyapunov exponential spectrum obtained with the diagram of global bifurcation of the given system, the validity of the proposed method computing Lyapunov exponential spectrum was verified. Furthermore, some dynamical characters of this system under the given parameters were obtained.
出处 《振动与冲击》 EI CSCD 北大核心 2012年第7期148-152,共5页 Journal of Vibration and Shock
基金 国家自然科学基金(10972059) 广西自然科学基金(2010GXNSFA013110) 广西青年科学基金(0832014) 广西大学拔尖创新团队建设计划资助项目
关键词 LYAPUNOV指数谱 POINCARE映射 分岔 冲击消振器 Lyapunov exponential spectrum poincare mapping bifurcation impact damper
  • 相关文献

参考文献13

  • 1Shaw S W, Holmes P J. A periodically forced piecewise linear oscillator [ J ]. Journal of Sound and Vibration, 1983,90 ( 1 ) : 129 - 155.
  • 2Hu H Y. Detection of grazing orbits and incident bifurcations of a forced continuous, piecewise-linear oscillator[ J ]. Journal of Sound and Vibration, 1995, 187 (3) : 485 - 493.
  • 3皇甫玉高,李群宏.一类单侧碰撞悬臂振动系统的擦边分岔分析[J].力学学报,2008,40(6):812-819. 被引量:10
  • 4Ding W, Xie J. Toms T2 and its routes to chaos of a vibro- impact system[ J]. Physics Letters A, 2006, 349 (5) : 324 - 330.
  • 5Luo G, Ma L, Lv X. Dynamic analysis and suppressing chaotic impacts of a two-degree-of-freedom oscillator with a clearance[ J]. Nonlinear Analysis: Real World Applications, 2009, 10(2) : 756 -778.
  • 6Oseledec V I. A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems [ J ]. Trans Moscow Math Soc, 1968, 19:197-231.
  • 7Babitsky V I. Theory of vibro-impact systems and applications [ M]. Berlin: Springer, 1998.
  • 8Parker T S. Practical numerical algorithms for chaotic systems [ M]. New York: Springer-Verlag, 1989.
  • 9Guckenheimer J, Holmes P. Nonlinear oscillations, dynamical systems, and bifurcations of vector fields [ M ]. New York: Springer-Verlag, 1983.
  • 10De Souza S L T, Caldas I L. Calculation of lyapunov exponents in systems with impacts [ J]. Chaos, Solitons & Fraetals, 2004, 19(3): 569-579.

二级参考文献32

共引文献41

同被引文献16

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部