期刊文献+

采用零树结构分类小波系数的红外图像降噪 被引量:6

Infrared Image Denoising Based on Classified Wavelet Coefficients Using Zerotree Structure
下载PDF
导出
摘要 红外图像易受噪声污染,为了改善红外图像的质量,提出了一种基于零树结构分类小波系数的红外图像降噪算法。该算法利用小波零树结构表达尺度间的相关性,通过空间自适应阈值将小波系数进行分类,并根据不同类系数的统计特性采用不同的先验分布模型,在贝叶斯框架下实现降噪。实验结果表明,本文算法在峰值信噪比(PSNR)指标上优于传统算法;从视觉效果来看,该算法在有效去除图像噪声的同时能较好地保持空间细节,可以满足当前红外图像降噪的需求。 Infrared image is vulnerable to noise pollution. In order to improve the quality of the infrared image, a denoising algorithm based on classified wavelet coefficients using zerotree structure was proposed. First, the wavelet coefficients were classified via adaptive threshold by expressing the inter-scale dependencies using zerotree structure. Then, various prior distribution models were adopted to represent various statistic characteristics of different class's coefficients. Finally, infrared image denoising was implemented by Bayes estimation. Experimental results show that the performance of the proposed algorithm is superior to the traditional algorithms in terms of the Peak Signal to Noise Ratio (PSNR). As for visual quality, the proposed algorithm could reduce the noise effectively and retain more details simultaneously. Therefore, it can meet the general demand of denoising for infrared image.
出处 《光电工程》 CAS CSCD 北大核心 2012年第5期79-84,共6页 Opto-Electronic Engineering
基金 浙江省自然科学基金(Y1111061) 宁波市自然科学基金(2011A610192) 浙江省公益性技术应用研究计划项目(2010C33104)资助
关键词 红外图像 小波系数 零树结构 降噪 infrared image wavelet coefficient zerotree structure denoising
  • 相关文献

参考文献12

  • 1Jones B F,Plassmann P.Digital Infrared Thermal Imaging of Human Skin[J].IEEE Engineering in Medicine and Biology Magazine(S0739-5175),2002,21(6):41-48.
  • 2倪国强,秦庆旺,肖蔓君,高昆.中国红外成像技术发展的若干思考[J].科技导报,2008,26(22):88-93. 被引量:6
  • 3王怀野,张科,李言俊.各向异性滤波在红外图像处理中的应用[J].红外与毫米波学报,2005,24(2):109-113. 被引量:24
  • 4Chen G Y,Bui T D,Krzyzak A.Image denoising using neighbouring wavelet coefficients[J].Integrated Computer-Aided Engineering(S1069-2509),2005,12(1):99-107.
  • 5周扬,吕进,刘铁兵,施秧,戴曙光.小波域高斯混合模型方差估计近红外降噪方法[J].光电工程,2011,38(8):96-100. 被引量:6
  • 6宋坤坡,夏顺仁,徐清.考虑小波系数相关性的超声图像降噪算法[J].浙江大学学报(工学版),2010,44(11):2203-2208. 被引量:8
  • 7Artur L,David B,Nishan C.Non-Gaussian model-based fusion of noisy images in the wavelet domain[J].Computer Vision and Image Understanding(S1077-3142),2010,114(1):54-65.
  • 8Shapiro J M.Embedded image coding using zerotrees of wavelets coefficients[J].IEEE Trans.on Signal Proc(S1053-587X),1993,41(12):3445-3462.
  • 9Qiu P H,Mukherjee P S.Edge structure preserving image denoising[J].Signal Processing(S0165-1684),2010,90(10):2851-2862.
  • 10Mallat S.A Wavelet Tour Guide of Signal Processing[M].San Diego:Academic Press,1999:80-150.

二级参考文献58

  • 1田高友,袁洪福,刘慧颖,陆婉珍.小波变换用于近红外光谱性质分析[J].分析化学,2004,32(9):1125-1130. 被引量:31
  • 2董言治,周晓东.红外成像半实物仿真中景像投影方式的研究[J].激光与红外,2004,34(4):243-246. 被引量:8
  • 3姚建铨,路洋,张百钢,王鹏.THz辐射的研究和应用新进展[J].光电子.激光,2005,16(4):503-510. 被引量:70
  • 4韩庆福,成立,严雪萍,张慧,刘德林,李俊,徐志春.系统级封装(SIP)技术及其应用前景[J].半导体技术,2007,32(5):374-377. 被引量:9
  • 5King D F, Graham J S, Kennedy A M. 3rd-generation MW/LWIR sensor engine for advanced tactical systems [C]//Proceedings of SPIE. 2008, 6940: 69402R.
  • 6Crawford S, Craig R, Haining A. THALES long wave advanced IR QWIP cameras [C]//Proceedings of SPIE, 2006, 6206: 62060H.
  • 7Gunapala S D, Bandara S V, Liu J K. Development of megapixel dual- band QWIP focal plane array [C]//Proeeedings of SPIE. 2008, 6940: 69402T.
  • 8Norton P W, Cox S, Murphy B. Uncooled thermal imaging sensor and application advances[C]//Proceedings of SPIE. 2006, 6206: 620617.
  • 9Fieque B, Robert P, Minassian C. Uncooled amorphous silicon XGA IRFPA with 17μm pixel-pitch for high end applications[C]//Proceedings of SPIE. 2008, 6940: 69401X.
  • 10Sundberg R, Richtsmeier S, Berk A. Thermal infrared scene simulation for plume detection algorithm evaluation [C]//Proceedings of SPIE. 2004, 5416: 135-145.

共引文献40

同被引文献53

引证文献6

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部