期刊文献+

两因子模型在多姿态人脸识别中的应用 被引量:3

Application of Two-factors Model in Multi-Pose Face Recognition
原文传递
导出
摘要 通过对两因子模型的进一步深化、提炼和改进,提出了一种基于两因子模型的多姿态人脸识别方法,该方法能有效地缓解人脸特征对姿态变化较为敏感的问题。实验结果表明,经过姿态因子分离后的人脸全局或局部特征在保持较高显著性的同时,均对姿态变化具有理想的鲁棒性,在FERET人脸数据库上取得了最高92.5%的识别率。 We present a multi-pose face recognition method based on two-factor analysis model.The method refines the traditional two-factor analysis model,and partly solves the problem that facial feature is sensitive to the pose variation.Large number of 3D face data is trained in the two-factor analysis model to get robust and differential pose factors.In the experiment of FERET facial database,the best recognition accuracy is 92.5%.The results show that both the global and local facial features maintain a good pose variation robustness and high significance of feature descriptor after the pose factor separation.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2012年第5期546-549,585,共5页 Geomatics and Information Science of Wuhan University
基金 湖北省科技攻关计划资助项目(2006AA301B44)
关键词 人脸识别 两因子模型 多模态信息 姿态估计策略 face recognition two-factors model multi-modal information pose pre-estimation strategy
  • 相关文献

参考文献8

二级参考文献135

  • 1JIANGJi-xiang,XUBao-wen,LUJian-jiang,ZhouXiao-yu.Obtaining Profiles Based on Localized Non-negative Matrix Factorization[J].Wuhan University Journal of Natural Sciences,2004,9(5):580-584. 被引量:2
  • 2Swets D L, Weng J. Using Discriminant Eigenfetures for Image Retrieval [J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 1996, 16 (8):831-836.
  • 3Yu H, Yang J. A Direct LDA Algorithm for High- dimensional Data with Application to Face Recognition[J]. Pattern Recognition, 2001, 34(10):2 067- 2 070.
  • 4Huang R, Liu Q, Lu H, et al. Solving the Small Size Problem of LDA[J]. Int'l Conf. Pattern Recognition,2002, 3(8) ;29-32.
  • 5Cevikalp H, Neamtu M, Wilkes M, Barkana A. Discriminative Common Vectors for Face Recognition[J]. Pattern Analysis and Machine Intelligence, 2005, 27 (1):4-13.
  • 6belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs. Fisherfaces:Recognition Using Class Specific Linear Projection[J]. Pattern Analysis and Machine Intelligence, 1997, 19 (7):711-720.
  • 7Bing Y, Lianfu J, Ping C. A New LDA-Based Method for Face Recognition[J]. Int'l Conf. Pattern Recognition, 2002(1) :168-171.
  • 8Liu J, Chen S C. Discriminant Common Vectors Versus Neighbourhood Omponents Analysis and Laplacianfaces: a Comparative Study in Small Sample Size Problem[J]. Image and Vision Computing, 2006, 24(3) :249-262.
  • 9Golub G H, Loan C F V. Matrix Computations (third ed)[M]. Baltimore, MD: Johns Hopkins University Press, 1996.
  • 10Jain A K, Duin R P W, Mao J. Statistical Pattern Recognition: a Review[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22 (1):4-37.

共引文献144

同被引文献84

引证文献3

二级引证文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部