摘要
将材料本构关系简化成拉压屈服极限不同的理想弹塑性模型,推导了矩形横截面梁在完全弹性状态、单侧塑性状态及双侧塑性状态下依赖于压拉屈服极限比的几何中轴的曲率方程.并将其应用于悬臂梁的变形及各阶段极限荷载的分析,最后利用所得的解研究了材料压拉强度差效应对矩形截面梁塑性极限弯矩的影响.结果表明,考虑材料压拉强度差效应时梁的塑性极限弯矩将明显提高.
Based on the analysis of engineering theory in plastic mechanics,it derives the curvature equations of geometric mid-axis of a perfectly-elastic-plastic rectangle-section beam with different yield strength in tension and compression for three states: elastic,single-side plastic and both-side plastic.Finally,the influence of the strength-difference effect on plastic limit moment was investigated by the current solution,the result show that the plastic limit moment increases when the strength-difference effect of materials is considered.
出处
《湖南理工学院学报(自然科学版)》
CAS
2012年第1期77-80,共4页
Journal of Hunan Institute of Science and Technology(Natural Sciences)
基金
湖南省自然科学基金重点项目(08JJ3117)
长沙理工大学重点实验室开放基金资助项目(10KA06)
关键词
几何中轴
曲率方程
弹塑性分析
屈服极限
geometrical mid-axis
curvature equation
elastic-plastic analysis
limit of yield strength