期刊文献+

一类捕食者具有阶段结构的捕食被捕食系统的持久性 被引量:1

Permanence of a Predator-prey System with Stage Structure for Predator
下载PDF
导出
摘要 研究了捕食者和被捕食者都具有时滞的捕食被捕食模型,并且这两种情况都具有阶段结构.利用数学分析的方法得到了系统的持久性和有界性的充分条件. In this paper, we mainly analyze and study two predator-prey systems with Stage Structure and with delays for prey and predator, receptively. By using the Mathematical analysis method, we give the sufficient condition for boundedness and persistence of systems.
出处 《新疆大学学报(自然科学版)》 CAS 2012年第2期157-161,173,共6页 Journal of Xinjiang University(Natural Science Edition)
基金 国家自然科学基金(10961022 10901130) 新疆维吾尔自治区自然科学基金(2010211A07)
关键词 捕食被捕食模型 阶段结构 自治系统 时滞 持久性 Predator-prey system Stage structure Autonomous system Time delay permanence
  • 相关文献

参考文献14

  • 1Goh B. Global stability in two species interactions[J]. J Math Biol, 1976, 3:313 - 318.
  • 2Hastings A. Global stability in two species systems[J]. J Math Biol, 1978, 5:399 - 403.
  • 3He X. stability and delay in a predator-prey system[J]. J Math Anal Appl, 1996, 198:355 - 370.
  • 4Aiello W, Freedman H. A time-delay model of single-species growth with stage structure[J]. Math Biosci, 1990, 101 139 - 153.
  • 5Aiello W, Freedman H, Wu J. Analysis of a model representing stage-structured population growth with state-dependent time delay[J]. SIAM J Appl Math, 1992, 52:855 - 869.
  • 6Freedman H, Wu J. Persistence and global asymptotic stability of single-species dispersal models with stage structure[J]. Quart Appl Math, 1991, 49:351 - 371.
  • 7Kuang Y, So J. Analysis of a delayed two-stage population model with space-limited recruitment[J]. SIAM J Appl Math, 1995, 55:1675 - 1696.
  • 8Brauer F, Ma Z. stability of stage-structured population models[J]. J Math Anal Appl, 1987, 126:301 - 315.
  • 9Wang W, Chen L. A predator - prey with stage-structure for predator[J]. Computer Math Appl, 1997, 33:83 - 91.
  • 10Magnusson K. Destabilizing effect of cannibalism on a structured predator - prey system[J]. Math Biosci, 1999, 155:61 - 75.

同被引文献7

  • 1Cushing J M. Periodic time -dependent predator- prey systems[ J ]. SIAM J Appl Math, 1977, 32 (1) : 82 -95.
  • 2Xu Rui, Chaplain M A J, Davidson F A. Global stability of a Lotka - Volterra type predator -prey model with stage structure and time delay[J]. Appl Math Comput, 2004, 159(3) : 863 -880.
  • 3Gui Zhanji, Ge Weigao. The effect of harvesting on a predator - prey system with stage structure [ J ]. Ecol Modelling, 2005, 187(2/3): 329 -340.
  • 4Cai Liming, Song Xinyu. Permanence and stability of a predator- prey system with stage structure for predator[ J]. J Comput Appl Math, 2007, 201(2) : 356-366.
  • 5Song Xinyu, Chen Lansun. Optimal harvesting and stability for a two - species competitive system with stage structure[ J ]. Math Biosci, 2001, 170(2): 173-186.
  • 6Liu Shengqiang, Chen Lansun, Luo Guilie, et al. Asymptotic behaviors of competitive Lotka - Voherra system with stage struc- ture[J]. J Math Anal Appl, 2002, 271(1) : 124 - 138.
  • 7马智慧,李自珍,王淑璠.具有阶段结构的捕食-食饵模型[J].兰州大学学报(自然科学版),2008,44(2):103-106. 被引量:6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部