期刊文献+

基于构图分析的古代壁画相关度评价方法 被引量:4

Composition analysis-based relevance ranking for ancient mural
下载PDF
导出
摘要 由于目前的图像检索技术没有考虑壁画的构图学特征,缺乏对复杂语义的处理能力,难以满足古代壁画研究工作对检索全面性和准确性的要求.为提高古代壁画图像语义检索的质量,提出基于构图分析的相关度模型,通过引入基于绘画构图学的理论和分析方法,从壁画内容的布局、主题和语义三方面用量化方法描述检索语义与壁画内容的相关度,较好地解决了用户的真实检索意图与壁画内容间的"语义鸿沟"问题.该相关度评价模型可嵌入基于语义查询扩展的框架中,以提高Top N结果的准确率,同时维持了较高的查全率.敦煌壁画资料检索的实际应用表明:以反映前n个结果准确率的R-Precision为评测指标,基于构图分析的相关度评价方法可比未采用相关度评价的基线方法平均高出36%. The present image retrieval technologies have difficulties in retrieving ancient murals,since they lack of the abilities to handle complex semantic and features of layout in painting.This work puts forward a new relevance ranking model based on composition analysis to improve ancient mural retrieval.By introducing the theory of composition on painting,the relevance ranking model measures the relevance of mural images from three aspects which are layout,topic and semantics,and reduces the semantic gap between the content of mural and the real intention of the user.The relevance ranking model was seamlessly integrated into a unified framework for semantic query expansion to improve the precision of Top N results while maintaining a high recall.Experimental results of the Dunhuang Murals show that compared with the baseline method,the R-Precision ratio of semantic mural retrieval based on this model can be increased by 36% on average.
作者 王琦 鲁东明
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2012年第3期392-401,共10页 Journal of Zhejiang University:Engineering Science
基金 国家教育部长江学者和创新团队发展计划资助项目(IRT0652) 教育科研基础设施IPv6技术升级和应用示范项目 古代壁画保护国家文物局重点科研基地开放课题资助项目 新世纪优秀人才支持计划资助项目(NCET-04-0535)
关键词 语义检索 扩展检索 相关度 构图 古代壁画 semantic retrieval query expansion relevancy composition ancient mural
  • 相关文献

参考文献6

二级参考文献91

  • 1C Chen, A Del Bimbo, G Amato et al. Report of the DELOS-NSF working group on digital imagery for significant cultural and historical materials. DELOS-NSF Reports, Dec. 2002.
  • 2Hollink L, Schreiber A Th, Wielemaker J, Wielinga B. Semantic annotation of image collections. In Proc. the KCAP'03 Workshop on Knowledge Capture and Semantic Annotation,Florida, October 2003.
  • 3Bo Hu, Dasmahapatra S, Lewis P, Shadbolt N. Ontologybased medical image annotation with description logics. IEEE ICTAI'03, November 3-5, 2003, pp.77-82.
  • 4Hyvoenen E, Saarela S, Viljanen K: Ontology based image retrieval. In Proc. WWW 2003, Budapest, 2003, poster paper.
  • 5Soo Von-Wun, Lee Chen-Yu, Li Chung-Cheng et al. Automated semantic annotation and retrieval based on sharable ontology and case-based learning techniques. Joint Conf.Digital Libraries, 2003, pp.61-72.
  • 6Bob Wielinga, Guus Schreiber, Wielemaker Jet al. From thesaurus to ontology. In Int. Conf. Knowledge Capture,Victoria, Canada, Oct. 2001, pp.194-201.
  • 7Peterson T. Introduction to the Art and Architecture Thesaurus. Oxford University Press, 1994. http://www.getty.edu/research/conducting_research/vocabularies/aat/.
  • 8Hyvoenen E, Saarela S, Viljanen K. Intelligent image retrieval and browsing using semantic web techniques-A case study.In International SEPIA Conference at the Finnish Museum of Photography, Helsinki, September, 2003.
  • 9Mezaris V, Kompastsiaris I, Strintzis M G. An ontology approach to object-based image retrieval. In IEEE ICIP, 2003,op.511-514.
  • 10Breen C, Khan L, Ponnusamy A, Wang L. Ontology-based image classification using neural networks. In Proc. SPIE Internet Multimedia Management Systems Ⅲ, Boston, MA,July 2002, pp.198-208.

共引文献102

同被引文献41

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部